Mapping protein signatures to single allele chromatin topologies at genomic resolution
在基因组分辨率下将蛋白质特征映射到单等位基因染色质拓扑
基本信息
- 批准号:10649096
- 负责人:
- 金额:$ 21.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-07 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationAllelesAntibody RepertoireArchitectureBindingBinding ProteinsBinding SitesBiological AssayBoundary ElementsCell Culture TechniquesCell NucleusCellsCellular AssayCellular biologyChIP-seqChromatinChromatin StructureChromosome TerritoryChromosomesComplementDNA SequenceDataData SetDetectionDevelopmentDiseaseElementsEnhancersEpigenetic ProcessFrequenciesGene ExpressionGenesGenetic TranscriptionGenomeGenomicsHealthHi-CHumanImageImmune systemIndividualInterphaseKnowledgeLengthLinkMapsMeasurementMethodsMolecularMolecular ConformationNatureNuclearNuclear ProteinsNucleosomesOpticsOutcomePerformancePopulationPost-Translational Protein ProcessingProcessPropertyProteinsProtocols documentationReadingRegulatory ElementResolutionSamplingSignaling ProteinStretchingStructureStructure-Activity RelationshipTechnologyTimeVariantVisualizationchromatin immunoprecipitationchromatin proteinchromosome conformation capturecolor detectioncombinatorialdetection limitgenomic locushigh riskhistone modificationinnovationinsightinstrumentationinterestmultidimensional datananometernovelparallelizationpromoterreconstructionsegregationsingle moleculestem cell populationstem cellssuperresolution microscopytimelinetranscription factorultra high resolution
项目摘要
Interphase chromatin is hierarchically organized in chromosome territories, active and inactive compartments, and
topologically associating domains (TADs). Gene expression is controlled by regulatory chromatin elements (enhancers
and promoters) that bind transcription factors and interact within, but not across TAD boundaries. Recent advances in
single cell biology have revealed a tremendous amount of cell-to-cell variability in both chromatin topology and protein
coverage. Even though TADs appear to delineate functional units at the population level, their boundaries only emerge as
average properties from large ensembles of cells. TAD-like structures persist even in the absence of boundaries at the
ensemble level. Similarly, single cell ChIP-seq has revealed sub-states with distinct epigenetic profiles at enhancers in a
population of stem cells. But no assay exists to link topological and functional variability by reading out protein coverage
and epigenetic signatures simultaneously from single cell chromatin traces. Here, we will leverage recent advances in
multiplexed chromatin imaging and single molecule super-resolution microscopy to fill in this gap. In Aim I, we will
characterize the tradeoff between sequence resolution and spatial precision in multiplexed chromatin imaging. We will
then use optimized conditions to map super-resolved protein signal to chromatin topologies at genomic resolution. In Aim
II, we will extend the capabilities of the assay to detect multiple protein signatures simultaneously. Such combinatorial
data on protein signatures of regulatory elements at genomic resolution is not available through any other single cell
assay. We will further characterize the performance of the assay under challenging conditions by mapping both stably
integrated, widespread histone modifications and transiently binding sequence-specific transcription factors with a sizable
unbound fraction to chromatin. Using computational clustering strategies, we will stratify the data by chromatin topology
to determine if structural variation is driven by specific protein factors such as transcription factors that orchestrate long-
range enhancer interactions. Finally, we will establish protocols and technological solutions to accelerate acquisition,
processing, and visualization of statistically meaningful datasets comprising 100s-1000s of single alleles. The resulting
datasets will provide unprecedented insight into the molecular mechanisms underlying cell-to-cell variability in chromatin
topology and serve as a powerful hypothesis generator for investigating single cell genome structure-function
relationships.
间期染色质在染色体区域、活性区室和非活性区室中分层组织,
拓扑关联域(TAD)。基因表达由调节染色质元件(增强子)控制
和启动子)结合转录因子并在 TAD 边界内相互作用,但不跨越 TAD 边界。最近的进展
单细胞生物学揭示了染色质拓扑和蛋白质的巨大细胞间变异性
覆盖范围。尽管 TAD 似乎在人口水平上描绘了功能单位,但它们的边界仅在以下情况下出现:
来自大型细胞群的平均特性。即使在没有边界的情况下,类似 TAD 的结构仍然存在
合奏级别。同样,单细胞 ChIP-seq 揭示了增强子中具有不同表观遗传特征的亚状态。
干细胞群体。但目前还没有通过读取蛋白质覆盖率来联系拓扑和功能变异性的分析方法
和表观遗传特征同时来自单细胞染色质痕迹。在这里,我们将利用最新的进展
多重染色质成像和单分子超分辨率显微镜填补了这一空白。在目标一中,我们将
表征多重染色质成像中序列分辨率和空间精度之间的权衡。我们将
然后使用优化的条件以基因组分辨率将超分辨蛋白质信号映射到染色质拓扑。瞄准
II,我们将扩展该测定的能力,以同时检测多个蛋白质特征。这样的组合
任何其他单细胞都无法获得基因组分辨率下调控元件的蛋白质特征数据
化验。我们将通过稳定地映射两者来进一步表征该测定在具有挑战性的条件下的性能
整合的、广泛的组蛋白修饰和瞬时结合序列特异性转录因子
未结合染色质的部分。使用计算聚类策略,我们将按染色质拓扑对数据进行分层
确定结构变异是否是由特定的蛋白质因子驱动的,例如协调长链的转录因子
范围增强剂相互作用。最后,我们将建立协议和技术解决方案来加速收购,
对包含 100-1000 个单个等位基因的具有统计意义的数据集进行处理和可视化。由此产生的
数据集将为细胞间染色质变异的分子机制提供前所未有的见解
拓扑并作为研究单细胞基因组结构功能的强大假设生成器
关系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jan-Hendrik Spille其他文献
Jan-Hendrik Spille的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jan-Hendrik Spille', 18)}}的其他基金
Structural and functional determinants of biomolecular condensates in transcription organization
转录组织中生物分子凝聚体的结构和功能决定因素
- 批准号:
10714536 - 财政年份:2023
- 资助金额:
$ 21.14万 - 项目类别:
相似国自然基金
高功率激光驱动低β磁重联中磁岛对电子加速影响的研究
- 批准号:12305275
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
U型离散顺流火蔓延非稳态热输运机理与加速机制研究
- 批准号:52308532
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
实施科学视角下食管癌加速康复外科证据转化障碍机制与多元靶向干预策略研究
- 批准号:82303925
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
TWIST1介导的ITGBL1+肿瘤相关成纤维细胞转化加速结肠癌动态演化进程机制及其预防干预研究
- 批准号:82373112
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
NOTCH3/HLF信号轴驱动平滑肌细胞表型转化加速半月板退变的机制研究
- 批准号:82372435
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Impact of Mitochondrial Lipidomic Dynamics and its Interaction with APOE Isoforms on Brain Aging and Alzheimers Disease
线粒体脂质组动力学及其与 APOE 亚型的相互作用对脑衰老和阿尔茨海默病的影响
- 批准号:
10645610 - 财政年份:2023
- 资助金额:
$ 21.14万 - 项目类别:
Silica Nanocapsule-Mediated Nonviral Delivery of CRISPR Base Editor mRNA and Allele Specific sgRNA for Gene Correction in Leber Congenital Amaurosis
二氧化硅纳米胶囊介导的 CRISPR 碱基编辑器 mRNA 和等位基因特异性 sgRNA 非病毒传递用于 Leber 先天性黑蒙的基因校正
- 批准号:
10668166 - 财政年份:2023
- 资助金额:
$ 21.14万 - 项目类别:
Axonal Varicosity Dynamics in Central Neuron Mechanosensation and Injury
中枢神经元机械感觉和损伤中的轴突静脉曲张动力学
- 批准号:
10905596 - 财政年份:2023
- 资助金额:
$ 21.14万 - 项目类别:
Contributions of autophagy-related genes in lupus
自噬相关基因在狼疮中的贡献
- 批准号:
10682136 - 财政年份:2023
- 资助金额:
$ 21.14万 - 项目类别:
Multiscale functional characterization of genomic variation in human developmental disorders
人类发育障碍基因组变异的多尺度功能表征
- 批准号:
10689051 - 财政年份:2021
- 资助金额:
$ 21.14万 - 项目类别: