Airway Tree Subtyping on Large Cohorts of CT Images for COPD Risk

针对慢性阻塞性肺病 (COPD) 风险对大组 CT 图像进行气道树亚型分析

基本信息

项目摘要

Project Summary / Abstract: Chronic obstructive pulmonary disease (COPD) defined by irreversible airflow limitation, is the 3rd leading cause of death globally and 4th in the United States. Smoking tobacco is a major extrinsic COPD risk factor, but despite six decades of declining smoking rates in many countries, the corresponding declines in COPD have been modest. Only a minority of lifetime smokers develop COPD, and up to 25% occurs in never smokers. While other factors have been linked to COPD much of the variation in COPD risk remains unexplained. In addition, personalized risk and therapies are lacking for COPD, due to a lack of reliable COPD subphenotypes. Airflow obstruction, or reduced airflow from the lungs, is determined in part by airway tree structure and lung volume, both of which can be imaged with high precision by high resolution computed tomographic (HRCT) scans. Emerging evidence by our group suggests that airway tree structure variation is common in the general population and is a major contributor to this unexplained COPD risk. By manual labeling of the airway tree structure, limited to one airway generation in just 2 of the 5 lung lobes (due to complexity of tree structure), we found that 26% of the general population has major airway branch variants that differ from the classical “textbook” structure, increase COPD risk, and have a strong and biologically plausible genetic basis. We further demonstrated that airway tree caliber variation (dysanapsis) measured on CT was a stronger predictor of COPD risk than all known risk factors including smoking. Yet there is no standardized approach to characterize the full scope airway tree variation, making the exact relationship between COPD and individual airway-structure features unclear. This proposal would apply for the first-time the power of machine learning methods to the entire airway tree structure imaged on HRCT to build logically upon prior high-impact work to discover new COPD subphenotypes for risk stratification and biological pathways of intervention. Also, we will apply sophisticated / rigorous mathematical clustering approaches to airway trees derived from over 18,000 computed tomography (CT) scans in three highly characterized NIH/NHLBI-funded cohorts – the Multi-Ethnic Study of Atherosclerosis (MESA) Lung Study, the Subpopulations and Intermediate Outcome Measures in Chronic Obstructive Pulmonary Disease Study (SPIROMICS), and the Genetic Epidemiology of COPD (COPDGene) Study, in addition to the Canadian Cohort of Obstructive Lung Disease (CanCOLD) – to discover and replicate novel and clinically significant airway tree subtypes and their genetic basis. The proposed study provides a transformative opportunity to define and validate normal and clinically relevant tree variation in the general population and COPD cohorts. This research would result in robust, reproducible, image based novel quantitative airway tree structure subtypes from lung CT scans, and understand their role in COPD risk, prognosis, and their underlying genetic basis to help personalize COPD risk.
项目摘要/摘要: 慢性阻塞性肺疾病 (COPD) 由不可逆气流受限定义,是第三大原因 吸烟是慢性阻塞性肺病 (COPD) 的主要外在危险因素,在全球死亡人数中排名第四。 尽管许多国家的吸烟率在过去 6 年来一直在下降,但慢性阻塞性肺病 (COPD) 的发病率也相应下降 只有少数终生吸烟的人会患上慢性阻塞性肺病,而从不吸烟的人中,有高达 25% 的人会患上慢性阻塞性肺病。 尽管其他因素与慢性阻塞性肺病有关,但慢性阻塞性肺病风险的大部分变化仍无法解释。 此外,由于缺乏可靠的慢性阻塞性肺病亚表型,慢性阻塞性肺病缺乏个性化的风险和治疗。 气流阻塞或来自肺部的气流减少部分取决于气道树结构和肺部 体积,两者都可以通过高分辨率计算机断层扫描 (HRCT) 进行高精度成像 我们小组的新证据表明,气道树结构变异在一般情况下很常见。 人口,是造成这种无法解释的慢性阻塞性肺病风险的主要因素 通过手动标记气道树。 结构,仅限于 5 个肺叶中的 2 个肺叶中的一个气道生成(由于树结构的复杂性), 我们发现 26% 的普通人群具有与经典气道分支不同的主要气道分支变异 “教科书”结构增加了慢性阻塞性肺病的风险,并且具有强大且生物学上合理的遗传基础。 证明 CT 测量的气道树口径变化(休憩)是 COPD 的更强预测因子 风险高于包括吸烟在内的所有已知风险因素,但尚无标准化方法来描述这一风险。 全方位气道树变异,使 COPD 与个体气道结构之间存在精确关系 该提案将首次将机器学习方法的力量应用于。 在 HRCT 上成像的整个气道树结构,以逻辑方式建立在先前的高影响力工作的基础上,以发现新的 用于风险分层和干预生物学途径的慢性阻塞性肺病亚表型。 此外,我们还将对源自以下内容的气道树应用复杂/严格的数学聚类方法: 在 NIH/NHLBI 资助的三个高度特征化的队列中进行了超过 18,000 次计算机断层扫描 (CT) 扫描 – 动脉粥样硬化多种族研究 (MESA) 肺研究、亚群和中间结果 慢性阻塞性肺疾病研究 (SPIROMICS) 的措施以及遗传流行病学 慢性阻塞性肺病 (COPDGene) 研究,以及加拿大阻塞性肺疾病队列 (CanCOLD) – 发现和复制新颖且具有临床意义的气道树亚型及其遗传基础。 拟议的研究提供了一个变革性的机会来定义和验证正常和临床相关的 一般人群和慢性阻塞性肺病队列中的树变异将产生稳健的、可重复的、 基于肺部 CT 扫描的基于图像的新型定量气道树结构亚型,并了解它们在 COPD 风险、预后及其潜在遗传基础有助于个性化 COPD 风险。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Francis Laine其他文献

Andrew Francis Laine的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Francis Laine', 18)}}的其他基金

Airway Tree Subtyping on Large Cohorts of CT Images for COPD Risk
针对慢性阻塞性肺病 (COPD) 风险对大组 CT 图像进行气道树亚型分析
  • 批准号:
    10299153
  • 财政年份:
    2021
  • 资助金额:
    $ 61.69万
  • 项目类别:
Airway Tree Subtyping on Large Cohorts of CT Images for COPD Risk
针对慢性阻塞性肺病 (COPD) 风险对大组 CT 图像进行气道树亚型分析
  • 批准号:
    10435540
  • 财政年份:
    2021
  • 资助金额:
    $ 61.69万
  • 项目类别:
Clinical validation of cardiac strain measures with real-time 4D ultrasound
使用实时 4D 超声测量心脏应变的临床验证
  • 批准号:
    7842187
  • 财政年份:
    2009
  • 资助金额:
    $ 61.69万
  • 项目类别:
Clinical validation of cardiac strain measures with real-time 4D ultrasound
使用实时 4D 超声测量心脏应变的临床验证
  • 批准号:
    7663144
  • 财政年份:
    2008
  • 资助金额:
    $ 61.69万
  • 项目类别:
Clinical validation of cardiac strain measures with real-time 4D ultrasound
使用实时 4D 超声测量心脏应变的临床验证
  • 批准号:
    7528866
  • 财政年份:
    2008
  • 资助金额:
    $ 61.69万
  • 项目类别:
Clinical validation of cardiac strain measures with real-time 4D ultrasound
使用实时 4D 超声测量心脏应变的临床验证
  • 批准号:
    7914454
  • 财政年份:
    2008
  • 资助金额:
    $ 61.69万
  • 项目类别:

相似国自然基金

老年期痴呆患者基础性日常生活活动能力损害的认知神经心理学基础及测量优化
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
基于VR技术的养老机构老年人ADL康复训练和评估量化体系构建及应用研究
  • 批准号:
    81902295
  • 批准年份:
    2019
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Ambulatory monitoring of a vocal efficiency index to improve the clinical management of voice disorders
动态监测发声效率指数以改善发声障碍的临床管理
  • 批准号:
    10629293
  • 财政年份:
    2021
  • 资助金额:
    $ 61.69万
  • 项目类别:
Airway Tree Subtyping on Large Cohorts of CT Images for COPD Risk
针对慢性阻塞性肺病 (COPD) 风险对大组 CT 图像进行气道树亚型分析
  • 批准号:
    10299153
  • 财政年份:
    2021
  • 资助金额:
    $ 61.69万
  • 项目类别:
Ambulatory monitoring of a vocal efficiency index to improve the clinical management of voice disorders
动态监测发声效率指数以改善发声障碍的临床管理
  • 批准号:
    10295970
  • 财政年份:
    2021
  • 资助金额:
    $ 61.69万
  • 项目类别:
Ambulatory monitoring of a vocal efficiency index to improve the clinical management of voice disorders
动态监测发声效率指数以改善发声障碍的临床管理
  • 批准号:
    10474472
  • 财政年份:
    2021
  • 资助金额:
    $ 61.69万
  • 项目类别:
Airway Tree Subtyping on Large Cohorts of CT Images for COPD Risk
针对慢性阻塞性肺病 (COPD) 风险对大组 CT 图像进行气道树亚型分析
  • 批准号:
    10435540
  • 财政年份:
    2021
  • 资助金额:
    $ 61.69万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了