Augmentation of Tissue Perfusion with Ultrasound-mediated Cavitation
用超声介导的空化增强组织灌注
基本信息
- 批准号:10650238
- 负责人:
- 金额:$ 51.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-04-12 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D ultrasoundAcousticsAcuteAddressAdenosineAdenosine A2B ReceptorAffectAgeAnimal ModelAntiinflammatory EffectAreaAtherosclerosisAwardBlood VesselsBlood flowCaliberCardiovascular DiseasesCathetersChronicChronic DiseaseClinical TrialsClinical Trials DesignCoagulation ProcessComplicationContrast MediaConvectionCoronary ArteriosclerosisCoronary arteryCytolysisDevelopmentDiabetes MellitusDiagnostic ImagingDiffuseDiseaseDistalDoseElementsEncapsulatedEndothelial CellsEndotheliumErythrocytesFoundationsFrequenciesFundingGene-ModifiedGrantHealth Care CostsHeartHeart failureHumanHuman BiologyHyperlipidemiaInfarctionInflammationIschemiaIsolated limb perfusionKnowledgeLeft Ventricular DysfunctionLegLeg UlcerLimb structureLungMapsMediatingMediator of activation proteinMethodsMicrobubblesMicrocirculationModelingMorbidity - disease rateMotionMusMuscleMuscle relaxation phaseMyocardial IschemiaMyocardial perfusionMyocardiumPathway interactionsPatientsPerfusionPeripheralPeripheral arterial diseasePhysiologic pulsePilot ProjectsPre-Clinical ModelPrimatesProstaglandinsProtocols documentationPulmonary EmbolismPulmonary Vascular ResistanceReceptor SignalingRegional PerfusionReperfusion TherapyRestRiskRisk FactorsRoleSchemeSignal TransductionSkeletal MuscleSmooth MuscleSyndromeSystemTechniquesTestingTherapeuticThrombosisTissue PreservationTissue ViabilityTissuesUltrasonic TherapyUnited StatesVascular DiseasesVascular resistanceVasodilationVasospasmacute coronary syndromeatherosclerosis riskbaseclinical diagnosticsclinical effectcontrast enhancedcritical limb Ischemiadesignfrailtyimprovedinhibitorlimb ischemiamortalitymouse modelnecrotic tissuenonhuman primatenovelnovel therapeutic interventionpreconditioningpressurepreventreceptorsexthromboticultrasoundvolunteerwound healing
项目摘要
SUMMARY
Ultrasound (US) is used for a variety of therapeutic applications. Over a range of different frequencies and
powers, US has been shown to produce to produce modest increases in arterial diameter and tissue perfusion
in animal models of limb and myocardial ischemia. In the initial funding period for this award, we described how
the combination of US with microbubble (MB) contrast agents that undergo inertial cavitation during high-power
contrast-enhanced US (CEU) produces much greater augmentation of limb skeletal muscle perfusion (up to
10-fold) than US alone. Brief CEU cavitation protocols were found to reverse limb ischemia for >24 hrs in
animal models, and a clinical trial in patients with peripheral artery disease (PAD) confirmed that MB cavitation
increases limb perfusion by several fold. In the course of our studies, optimal conditions for these bioeffects
were investigated which mandated us to design novel US pulse schemes and 3-D exposure capability. From a
mechanistic standpoint, we carefully mapped pathways responsible for cavitation-induced flow augmentation
which rely on shear-mediated ATP release from endothelial cells and erythrocytes, with secondary purinergic
vasodilation through downstream mediators (NO, prostaglandins, adenosine). Knowledge of the optimal
conditions and mechanistic underpinnings is critical for our current efforts to apply cavitation and activation of
ATP channels to treat ischemic disease by augmenting flow or by other potentially beneficial anti-thrombotic
and anti-inflammatory effects of purinergic signaling. The overall aim of this renewal is to leverage knowledge
from the first funding period in order to explore the therapeutic role of cavitation and non-cavitation US for
acute and chronic ischemic syndromes. In Aim 1 preclinical models will be used to determine whether limb
flow-augmentation from MB cavitation using previously-optimized pulse schemes can: (a) prevent tissue
necrosis in acute ischemia, with a particular focus on the effect of clinical variables (age, sex, hyperlipidemia,
diabetes), and (b) improve wound healing and limb function in chronic disease. The functional role of purinergic
vascular signaling will be evaluated by using inhibitor strategies or gene--modified models. In Aim 2 we will
determine whether MB cavitation directly augments myocardial perfusion in acute MI using murine models that
allow us to manipulate purinergic pathways, and in primate models that more closely resemble human biology.
We will also study how US-mediated ATP release has the potential to mitigate inflammation, and microvascular
thrombosis upon reperfusion. In Aim 3 we will test whether US energy from multi-element high-power intra-
arterial catheters increases downstream perfusion through shear-mediated purinergic pathways. This Aim is
based on evidence that therapeutic US catheters used in patients with pulmonary embolism can reduce
pulmonary vascular resistance even without clot lysis. Our proposal represents the translational steps for
development of non-invasive therapies for acute and chronic vascular diseases and will form the basis for the
design of clinical trials that we plan to initiate as the key unsolved issues are addressed.
概括
超声(US)用于多种治疗应用。超过一系列不同的频率和
美国已经显示出可产生的美国产生动脉直径和组织灌注的适度增加
在肢体和心肌缺血的动物模型中。在该奖项的最初资助期内,我们描述了如何
我们与微泡(MB)对比剂的组合,在大功率期间经历惯性空化
对比增强的美国(CEU)产生了更大的肢体骨骼肌肉灌注的增强(最多
比我们一个人十倍)。发现简短的CEU空化方案可逆转肢体缺血,> 24小时
动物模型和外周动脉疾病(PAD)患者的临床试验证实了MB气氮
将肢体灌注增加几倍。在我们的研究过程中,这些生物效应的最佳条件
研究了该研究要求我们设计新型的US脉搏方案和3-D暴露能力。来自
机械的角度,我们仔细映射了负责气腔诱导的流量增大的途径
依赖于剪切介导的ATP从内皮细胞和红细胞释放,次生嘌呤能
通过下游介质(不,前列腺素,腺苷)进行血管舒张。最佳知识
条件和机械基础对于我们目前的空化和激活至关重要
通过增加流动或其他潜在有益的抗脉动的ATP通道来治疗缺血性疾病
和嘌呤能信号传导的抗炎作用。这种更新的总体目的是利用知识
从第一个资金期开始,以探索空化和非浪费的治疗作用
急性和慢性缺血综合征。在AIM 1中,将使用临床前模型来确定是否肢体
使用先前优化的脉搏方案从MB空化的流动仪可以:(a)防止组织
急性缺血的坏死,特别关注临床变量的作用(年龄,性别,高脂血症,
糖尿病)和(b)改善慢性疾病中的伤口愈合和肢体功能。嘌呤能的功能作用
血管信号传导将通过使用抑制剂策略或基因改性模型来评估。在目标2中,我们将
确定使用使用鼠模型直接增强急性MI中的心肌灌注
允许我们操纵嘌呤能途径,并在更像人类生物学的灵长类动物模型中。
我们还将研究US介导的ATP释放如何减轻炎症和微血管
再灌注后血栓形成。在AIM 3中,我们将测试US来自多元素高功率内部的能源
动脉导管通过剪切介导的嘌呤能途径增加下游灌注。这个目标是
基于证据表明,在肺栓塞患者中使用的治疗性美国导管可以减少
即使没有凝块裂解,肺血管抗性也是如此。我们的建议代表了转化步骤
开发针对急性和慢性血管疾病的非侵入性疗法,将构成
我们计划在关键的未解决问题的关键问题上进行临床试验的设计。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan R Lindner其他文献
1074-155 The severity of peripheral vascular disease can be assessed by skeletal muscle contrast-enhanced ultrasound
- DOI:
10.1016/s0735-1097(04)91391-5 - 发表时间:
2004-03-03 - 期刊:
- 影响因子:
- 作者:
Thanjavur K Bragadeesh;Antionio Micari;marco Pascotto;Ibrahim Sari;Sanjiv Kaul;Jonathan R Lindner - 通讯作者:
Jonathan R Lindner
1074-152 Will combinations of multiple agents produce more robust contrast imaging? An in vitro study and in vivo studies in dogs
- DOI:
10.1016/s0735-1097(04)91388-5 - 发表时间:
2004-03-03 - 期刊:
- 影响因子:
- 作者:
Xiaokui Li;Hui Jiang;Diane Paine;Zuhua Mao;Aarti Hejmadi Bhat;Rima S Bader;Patrick von Behren;David Gustafson;Jonathan R Lindner;Alexander L Klibanov;David J Sahn - 通讯作者:
David J Sahn
Jonathan R Lindner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan R Lindner', 18)}}的其他基金
Advanced Non-invasive Imaging in the Investigation of Aortic Stenosis Pathobiology
主动脉瓣狭窄病理学研究中的先进无创成像
- 批准号:
10693935 - 财政年份:2022
- 资助金额:
$ 51.22万 - 项目类别:
Advanced Non-invasive Imaging in the Investigation of Aortic Stenosis Pathobiology
先进的无创成像在主动脉瓣狭窄病理学研究中的应用
- 批准号:
10522099 - 财政年份:2022
- 资助金额:
$ 51.22万 - 项目类别:
Augmentation of Tissue Perfusion in PAD with Ultrasound-mediated Cavitation
超声介导的空化增强 PAD 中的组织灌注
- 批准号:
9258481 - 财政年份:2016
- 资助金额:
$ 51.22万 - 项目类别:
Augmentation of Tissue Perfusion with Ultrasound-mediated Cavitation
用超声介导的空化增强组织灌注
- 批准号:
10379090 - 财政年份:2016
- 资助金额:
$ 51.22万 - 项目类别:
Augmentation of Tissue Perfusion with Ultrasound-mediated Cavitation
用超声介导的空化增强组织灌注
- 批准号:
10592406 - 财政年份:2016
- 资助金额:
$ 51.22万 - 项目类别:
Augmentation of Tissue Perfusion in PAD with Ultrasound-mediated Cavitation
超声介导的空化增强 PAD 中的组织灌注
- 批准号:
9005245 - 财政年份:2016
- 资助金额:
$ 51.22万 - 项目类别:
Augmentation of Tissue Perfusion with Ultrasound-mediated Cavitation
用超声介导的空化增强组织灌注
- 批准号:
10188594 - 财政年份:2016
- 资助金额:
$ 51.22万 - 项目类别:
MOLECULAR IMAGING OF INFLAMMATION IN ATHEROSCLEROSIS
动脉粥样硬化炎症的分子成像
- 批准号:
8357882 - 财政年份:2011
- 资助金额:
$ 51.22万 - 项目类别:
CONTRAST ULTRASOUND ASSESSMENT OF MICROVASCULAR FUNCTION IN INSULIN RESISTANT
超声造影对胰岛素抵抗患者微血管功能的评估
- 批准号:
8357883 - 财政年份:2011
- 资助金额:
$ 51.22万 - 项目类别:
Molecular Imaging of Ischemic Memory with Ultrasound - Transition to Humans
超声对缺血性记忆的分子成像 - 应用于人类
- 批准号:
7838481 - 财政年份:2009
- 资助金额:
$ 51.22万 - 项目类别:
相似国自然基金
基于多时序纵向3D超声图像Siamese多任务网络早期预测pMMR型局部进展期直肠癌PD-1单抗联合放化疗疗效
- 批准号:82302209
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
超声响应的3D压电纳米短纤维通过电信号调控骨髓间充质干细胞募集促骨缺损修复
- 批准号:82372572
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于3D超声心动图影像和因果知识图谱的双心室功能综合定量分析方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于3D超声心动图影像和因果知识图谱的双心室功能综合定量分析方法研究
- 批准号:62202092
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
面向3D芯片封装的双向复合超声键合机理及其换能系统设计与控制
- 批准号:52175392
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
相似海外基金
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10582051 - 财政年份:2023
- 资助金额:
$ 51.22万 - 项目类别:
Wearable Electrostrictive Row-Column Ultrasound Arrays for Longitudinal Echocardiography
用于纵向超声心动图的可穿戴电致伸缩行列超声阵列
- 批准号:
10610780 - 财政年份:2022
- 资助金额:
$ 51.22万 - 项目类别:
An Ionizing Radiation Acoustics Imaging (iRAI) Approach for guided Flash Radiotherapy
用于引导闪光放射治疗的电离辐射声学成像 (iRAI) 方法
- 批准号:
10707124 - 财政年份:2022
- 资助金额:
$ 51.22万 - 项目类别:
A novel transducer clip-on device to enable accessible and functional 3D ultrasound imaging
一种新型换能器夹式装置,可实现易于使用且功能齐全的 3D 超声成像
- 批准号:
10708132 - 财政年份:2022
- 资助金额:
$ 51.22万 - 项目类别:
A novel transducer clip-on device to enable accessible and functional 3D ultrasound imaging
一种新型换能器夹式装置,可实现易于使用且功能齐全的 3D 超声成像
- 批准号:
10587466 - 财政年份:2022
- 资助金额:
$ 51.22万 - 项目类别: