Biomimetic and Injectable Highly Porous Nanofiber Microsphere-based Platform for Alveolar Bone Regeneration
用于牙槽骨再生的仿生和可注射高孔隙纳米纤维微球平台
基本信息
- 批准号:10641000
- 负责人:
- 金额:$ 53.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-08 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationBMP2 geneBMP5 geneBindingBinding ProteinsBiologicalBiomimeticsBone DiseasesBone RegenerationBone ResorptionBone TransplantationCell Fate ControlCellsCoupledCouplingDataDefectDental ImplantsDevelopmentEndothelial CellsEngineeringEngraftmentFoundationsGasesHumanImmobilizationImplantation procedureInjectableInjectionsMandibleMaxillaMethodsMicrospheresMineralsModelingMolar toothMorphologyNatural regenerationOperative Surgical ProceduresOsteogenesisPatientsPeptidesPeriodontal DiseasesPlayPorosityProliferatingProteinsRattusReceptor CellRegenerative capacityRiskRoleSignaling MoleculeSiteStructureSurfaceSurgical FlapsSuspensionsSwellingTechniquesTestingTherapeuticTissuesTooth ExtractionTooth TissueTraumaTubular formationUmbilical veinVascular Endothelial Growth FactorsVascularizationagedalveolar boneangiogenesisbonebone healingbone lossbone marrow mesenchymal stem cellbone massbone prosthesisclinically relevantcostfabricationhealingmineralizationminimally invasivenanofiberosteogenicpeptidomimeticsreceptorrecombinant human bone morphogenetic protein-2regenerativeregenerative therapyrepairedresponseside effectstem cellstechnology platform
项目摘要
PROJECT SUMMARY
Alveolar bone is a critical tissue for tooth and dental implant retention. Increasing alveolar bone mass in
patients who lose this tissue as a result of periodontal disease or trauma is crucial for successful dental implant
therapy (e.g., loss of bone around a tooth extraction site prior to implant placement). Currently, bone grafts
(e.g., iliac or mandibular bone) or artificial bone grafts are commonly used for alveolar bone regeneration
therapy. However, most of these therapies require extensive surgical procedures, which present risks of many
complications, particularly in aged patients. Therefore, the development of new alveolar bone regeneration
techniques that do not require surgical procedures is urgently needed. Herein, in this proposed study, we aim
to develop an injectable and biomimetic highly porous nanofiber microsphere-based therapy for healing critical-
sized alveolar bone defects. We recently developed an exciting approach for the fabrication of biomimetic
nanofiber microspheres consisting of short electrospun nanofiber segments without limitation to certain
compositions. Cells can attach and proliferate on the surface of such nanofiber microspheres. Working with Dr.
Reinhardt (Co-I), we also demonstrated that mineralized short nanofibers incorporated with E7-BMP-2
peptides showed promise for healing a critical-sized socket defect model created in rat maxillae, following
extraction of the first molar teeth. In addition, our most recent study revealed that BMP-2/QK peptides
conjugated nanofiber microspheres can significantly enhance osteogenic differentiation of bone marrow
mesenchymal stem cells (BMSCs) and tubular network formation of human umbilical vein endothelial cells
(HUVECs). Based on these findings, it is hypothesized that the injectable highly porous nanofiber
microspheres in combination with biomimetic delivery of signaling molecules and/or incorporation of BMSCs
could greatly promote alveolar bone regeneration after minimally invasive administration to critical-sized
alveolar bone defects in rats. To test the hypothesis and accomplish the primary objective, our strategy is
three-fold: i) Demonstrate the fabrication of porous nanofiber microspheres with controlled composition,
structure, and coupling of signaling molecules; ii) Examine the effect of engineered porous nanofiber
microspheres with biomimetic delivery of signaling molecules on cellular response; and iii) Determine the bone
regenerative capacity of injectable porous nanofiber microspheres in combination with biomimetic delivery of
signaling molecules and/or BMSCs for healing alveolar bone defects in rats. We expect to identify the critical
factors of biomimetic and injectable highly porous nanofiber microsphere-based therapy that contribute to
alveolar bone regeneration. Also, we expect successful completion of these aims to lay the foundation for
developing injectable bone grafts that could greatly accelerate healing of alveolar bone defects without
invasive surgical procedures.
项目摘要
牙槽骨是牙齿和牙科植入物保留的关键组织。增加牙槽骨块
因牙周疾病或创伤而失去该组织的患者对于成功的牙科植入物至关重要
治疗(例如,植入植入物放置之前,牙齿拔牙部位周围失去骨骼)。目前,骨移植
(例如,i骨或下颌骨)或人造骨移植物通常用于肺泡骨再生
治疗。但是,这些疗法大多数都需要广泛的手术程序,这表现出许多人的风险
并发症,特别是在老年患者中。因此,新的肺泡骨再生的发展
迫切需要不需要手术程序的技术。在此,在这项拟议的研究中,我们的目标
开发可注射和仿生的高度多孔纳米纤维微球治疗,以治愈关键
大小的肺泡骨缺损。我们最近开发了一种令人兴奋的仿生制作方法
纳米纤维微球由短电纺纳米纤维段组成,而无需限制
组成。细胞可以在这种纳米纤维微球的表面附着并增殖。与博士合作
Reinhardt(Co-I),我们还证明了与E7-BMP-2合并的矿化短纳米纤维
肽显示出愈合临界大小的插座缺陷模型的希望
提取第一摩尔牙齿。此外,我们最近的研究表明BMP-2/QK肽
共轭纳米纤维微球可以显着增强骨髓的成骨分化
间充质干细胞(BMSC)和人脐静脉内皮细胞的管状网络形成
(HUVECS)。基于这些发现,可以假设注射高度多孔纳米纤维
微球与信号分子的仿生递送和/或BMSC结合
在最小侵入性给关键大小的侵入性后,可以极大地促进牙槽骨再生
大鼠牙槽骨缺损。为了检验假设并实现主要目标,我们的战略是
三倍:i)证明具有控制组成的多孔纳米纤维微球的制造,
信号分子的结构和偶联; ii)检查工程多孔纳米纤维的效果
微球具有信号分子在细胞反应上的仿生递送; iii)确定骨头
可注射多孔纳米纤维微球的再生能力与仿生递送的结合
信号分子和/或BMSC,用于愈合大鼠肺泡骨缺损。我们希望确定关键
仿生和可注射高度多孔纳米纤维微球的因素,有助于
肺泡骨再生。另外,我们希望成功完成这些目标,以奠定
开发可注射的骨移植物,可以极大地加速肺泡骨缺损的愈合
侵入性手术程序。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jingwei Xie其他文献
Jingwei Xie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jingwei Xie', 18)}}的其他基金
Multifunctional Intelligent Hierarchical Fibrous Biomaterials Integrated with Multimodal Biosensing and Feedback-Based Interventions for Healing Infected Chronic Wounds
多功能智能分层纤维生物材料与多模式生物传感和基于反馈的干预措施相结合,用于治愈感染的慢性伤口
- 批准号:
10861531 - 财政年份:2023
- 资助金额:
$ 53.37万 - 项目类别:
Strategies to Enhance Engineered Heart Tissue Based Myocardial Repair
增强基于工程心脏组织的心肌修复的策略
- 批准号:
10581419 - 财政年份:2023
- 资助金额:
$ 53.37万 - 项目类别:
A Novel High-Intensity Iontophoresis-Based Antibiotic Delivery Device for Efficacious Eradication of Chronic Wound Biofilms
一种新型高强度离子电渗疗法抗生素输送装置,可有效根除慢性伤口生物膜
- 批准号:
10433163 - 财政年份:2022
- 资助金额:
$ 53.37万 - 项目类别:
A Novel High-Intensity Iontophoresis-Based Antibiotic Delivery Device for Efficacious Eradication of Chronic Wound Biofilms
一种新型高强度离子电渗疗法抗生素输送装置,可有效根除慢性伤口生物膜
- 批准号:
10634602 - 财政年份:2022
- 资助金额:
$ 53.37万 - 项目类别:
Engineering structural bone allografts for enhanced repair and reconstruction
工程结构同种异体骨移植以增强修复和重建
- 批准号:
9978190 - 财政年份:2020
- 资助金额:
$ 53.37万 - 项目类别:
Nanofiber-based Delivery of Combined Immune-modulating Compounds to Minimize Infection and Enhance Wound Healing
基于纳米纤维的组合免疫调节化合物的递送以最大程度地减少感染并促进伤口愈合
- 批准号:
10473866 - 财政年份:2017
- 资助金额:
$ 53.37万 - 项目类别:
Nanofiber-based Delivery of Combined Immune-modulating Compounds to Minimize Infection and Enhance Wound Healing
基于纳米纤维的组合免疫调节化合物的递送以最大程度地减少感染并促进伤口愈合
- 批准号:
10653967 - 财政年份:2017
- 资助金额:
$ 53.37万 - 项目类别:
Nanofiber-based Delivery of Combined Immune-modulating Compounds to Minimize Infection and Enhance Wound Healing
基于纳米纤维的组合免疫调节化合物的递送以最大程度地减少感染并促进伤口愈合
- 批准号:
10299094 - 财政年份:2017
- 资助金额:
$ 53.37万 - 项目类别:
Nanofiber-based Delivery of Combined Immune-modulating Compounds to Minimize Infection and Enhance Wound Healing
基于纳米纤维的组合免疫调节化合物的递送以最大程度地减少感染并促进伤口愈合
- 批准号:
10796228 - 财政年份:2017
- 资助金额:
$ 53.37万 - 项目类别:
相似国自然基金
SPIO介导BMP2基因转染牙髓干细胞与SPIO-CPC构建组织工程骨的成骨能力及MRI监测
- 批准号:81771044
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:面上项目
BMP2/VEGF双基因活化可注射互穿网络水凝胶的构建及其在骨组织再生中的应用
- 批准号:31600777
- 批准年份:2016
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
髓核内注射转染BMP2基因的腺相关病毒2修复大鼠尾椎间盘退变及血清CTXII水平与退变程度的关系
- 批准号:81401842
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
超声介导载基因微泡调动SDF-1/CXCR4轴和BMP2动员AMI大鼠内源性BMSCs向心脏归巢分化
- 批准号:81460266
- 批准年份:2014
- 资助金额:47.0 万元
- 项目类别:地区科学基金项目
腺病毒介导BMP2/7基因共转染构建MSCs成骨分化及其信号传导机制的研究
- 批准号:81372091
- 批准年份:2013
- 资助金额:70.0 万元
- 项目类别:面上项目
相似海外基金
Analysis of BMP Heterodimer formation and function
BMP 异二聚体的形成和功能分析
- 批准号:
10371195 - 财政年份:2021
- 资助金额:
$ 53.37万 - 项目类别:
Analysis of BMP Heterodimer Formation and Function
BMP异源二聚体的形成和功能分析
- 批准号:
10406484 - 财政年份:2021
- 资助金额:
$ 53.37万 - 项目类别:
Analysis of BMP Heterodimer formation and function
BMP 异二聚体的形成和功能分析
- 批准号:
10593673 - 财政年份:2021
- 资助金额:
$ 53.37万 - 项目类别: