A Novel High-Intensity Iontophoresis-Based Antibiotic Delivery Device for Efficacious Eradication of Chronic Wound Biofilms
一种新型高强度离子电渗疗法抗生素输送装置,可有效根除慢性伤口生物膜
基本信息
- 批准号:10433163
- 负责人:
- 金额:$ 16.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-03 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAmputationAntibiotic ResistanceAntibioticsBacteriaBiologicalBiological ModelsCell Culture TechniquesCellsCharacteristicsChronicComputer AssistedDevice DesignsDevicesDiffusionDrug Delivery SystemsDrug resistanceElementsExtracellular MatrixFormulationGoalsGrowthHealthHealth Care CostsHourHumanHydrogelsIn VitroInfectionInflammatoryInflammatory ResponseIonsIontophoresisMicrobial BiofilmsMissionModelingNational Institute of Arthritis and Musculoskeletal and Skin DiseasesOutcomePatientsPersonsPhasePolymersProcessPublic HealthQuality of lifeRattusResearchSafetySkinSkin TissueSurgical FlapsTechnologyTemperatureTimeTissuesTopical applicationTreatment EfficacyVancomycinVancomycin ResistanceWound Infectionantibiotic designbasechronic woundcombatdesignextracellularhealingimprovedin vivometabolic ratemethicillin resistant Staphylococcus aureusmortalitynanoparticlenon-healing woundsnovelpreventresistance genesimulationskin regenerationsmall moleculetherapeutically effectivewoundwound biofilmwound healing
项目摘要
PROJECT SUMMARY. In this study, we will develop a novel ion current-based iontophoresis device that can
safely apply high intensity currents to deliver a therapeutically effective concentration of antibiotics into biofilms
within a short period of time to achieve efficacious eradication of chronic wound biofilm infections. Chronic
wounds are currently affecting more than 6 million people in the US. More than 78% of chronic wounds have
biofilms, which arrest the wounds in a prolonged inflammatory phase and prevent wound healing. Biofilms are
difficult to treat, because biofilm bacteria are more resistant to antibiotics and a protective matrix of extracellular
polymeric substances reduce the diffusion rate of antibiotics into biofilms. As a result, current antibiotic delivery
technologies are not capable of delivering sufficient antibiotic concentrations to effectively eradicate chronic
wound biofilm infections.
Iontophoresis is a non-invasive, electrical current-based drug delivery technology. Conventional iontophoresis
devices have low antibiotic delivery efficiency due to the low current intensities they use. Although higher current
intensities increase antibiotic delivery efficiency, they can cause significant tissue burn due to the temperature
increase and the pH changes at the device/tissue interface. In this proposal, based on an ion current-conducting
hydrogel ionic circuit (HIC) invented in our lab, we aim to develop a novel iontophoresis device that can safely
apply current intensities that are significantly higher than what current iontophoresis devices use. Higher current
intensities will allow us to deliver significantly higher amount of antibiotics to efficaciously eliminate biofilm
bacteria and restore the normal wound healing process. In Specific Aim 1, we will first design and optimize an
HIC-based, skin-mountable iontophoretic antibiotic delivery device through computer-aided finite-element
simulation. We will then determine the antibiotic delivery efficiency and biofilm eradication efficacy of our device
using an excised human skin-based wound infection model. The safety of high-intensity ion current application
will also be evaluated using in vitro cell cultures and healthy rats. In Specific Aim 2, we will determine the in vivo
biofilm eradication efficacy and wound healing enhancement efficacy of our device using a rat bipedicled skin
flap-based ischemic wound infection model. Our outcome will establish an optimal device design and a critical
proof-of-concept for the in vivo safety, biofilm eradication efficacy, and chronic wound healing enhancement
efficacy of our high-intensity iontophoretic antibiotic delivery device. The enhanced healing of chronic wounds
enabled by our device will greatly improve the quality of life for patients and reduce the overall healthcare cost.
项目摘要。在这项研究中,我们将开发一种新型的基于离子电流的离子电池设备
安全地施加高强度电流以将治疗有效的抗生素浓度输送到生物膜中
在短时间内实现慢性伤口生物膜感染的有效根除。慢性的
目前,在美国,伤口正在影响超过600万人。超过78%的慢性伤口具有
生物膜在长时间的炎症阶段阻止伤口并防止伤口愈合。生物膜是
很难治疗,因为生物膜细菌对抗生素具有更耐药性和细胞外保护基质
聚合物物质降低了抗生素对生物膜的扩散速率。结果,当前的抗生素递送
技术无法提供足够的抗生素浓度来有效消除慢性
伤口生物膜感染。
离子噬菌体是一种非侵入性的,基于电流的药物输送技术。常规的离子电池
由于其使用的电流强度低,设备的抗生素递送效率低。虽然电流较高
强度提高了抗生素递送效率,由于温度,它们可能导致大量组织燃烧
在设备/组织界面上增加和pH变化。在此提案中,基于离子电流导导
我们实验室中发明的水凝胶离子电路(HIC),我们旨在开发一种可以安全的离子电池设备
应用明显高于当前离子电池设备使用的电流强度。较高的电流
强度将使我们能够提供更高量的抗生素以有效消除生物膜
细菌并恢复正常的伤口愈合过程。在特定目标1中,我们将首先设计并优化
通过计算机辅助元件,基于HIC的,以HIC为基础的皮肤植入式抗生素输送装置
模拟。然后,我们将确定设备的抗生素递送效率和生物膜消除功效
使用切除的人皮肤伤口感染模型。高强度离子电流应用的安全性
还将使用体外细胞培养物和健康大鼠评估。在特定目标2中,我们将确定体内
生物膜根除疗效和伤口愈合的增强功效,使用大鼠双皮皮肤
基于皮瓣的缺血性伤口感染模型。我们的结果将建立最佳设备设计和关键
体内安全性,生物膜消除功效和慢性伤口愈合的概念证明
我们的高强度离子遗传抗生素输送装置的功效。慢性伤口的愈合增强
由我们的设备启用将大大改善患者的生活质量,并降低整体医疗保健成本。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jingwei Xie其他文献
Jingwei Xie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jingwei Xie', 18)}}的其他基金
Multifunctional Intelligent Hierarchical Fibrous Biomaterials Integrated with Multimodal Biosensing and Feedback-Based Interventions for Healing Infected Chronic Wounds
多功能智能分层纤维生物材料与多模式生物传感和基于反馈的干预措施相结合,用于治愈感染的慢性伤口
- 批准号:
10861531 - 财政年份:2023
- 资助金额:
$ 16.41万 - 项目类别:
Strategies to Enhance Engineered Heart Tissue Based Myocardial Repair
增强基于工程心脏组织的心肌修复的策略
- 批准号:
10581419 - 财政年份:2023
- 资助金额:
$ 16.41万 - 项目类别:
A Novel High-Intensity Iontophoresis-Based Antibiotic Delivery Device for Efficacious Eradication of Chronic Wound Biofilms
一种新型高强度离子电渗疗法抗生素输送装置,可有效根除慢性伤口生物膜
- 批准号:
10634602 - 财政年份:2022
- 资助金额:
$ 16.41万 - 项目类别:
Biomimetic and Injectable Highly Porous Nanofiber Microsphere-based Platform for Alveolar Bone Regeneration
用于牙槽骨再生的仿生和可注射高孔隙纳米纤维微球平台
- 批准号:
10641000 - 财政年份:2022
- 资助金额:
$ 16.41万 - 项目类别:
Engineering structural bone allografts for enhanced repair and reconstruction
工程结构同种异体骨移植以增强修复和重建
- 批准号:
9978190 - 财政年份:2020
- 资助金额:
$ 16.41万 - 项目类别:
Nanofiber-based Delivery of Combined Immune-modulating Compounds to Minimize Infection and Enhance Wound Healing
基于纳米纤维的组合免疫调节化合物的递送以最大程度地减少感染并促进伤口愈合
- 批准号:
10473866 - 财政年份:2017
- 资助金额:
$ 16.41万 - 项目类别:
Nanofiber-based Delivery of Combined Immune-modulating Compounds to Minimize Infection and Enhance Wound Healing
基于纳米纤维的组合免疫调节化合物的递送以最大程度地减少感染并促进伤口愈合
- 批准号:
10653967 - 财政年份:2017
- 资助金额:
$ 16.41万 - 项目类别:
Nanofiber-based Delivery of Combined Immune-modulating Compounds to Minimize Infection and Enhance Wound Healing
基于纳米纤维的组合免疫调节化合物的递送以最大程度地减少感染并促进伤口愈合
- 批准号:
10299094 - 财政年份:2017
- 资助金额:
$ 16.41万 - 项目类别:
Nanofiber-based Delivery of Combined Immune-modulating Compounds to Minimize Infection and Enhance Wound Healing
基于纳米纤维的组合免疫调节化合物的递送以最大程度地减少感染并促进伤口愈合
- 批准号:
10796228 - 财政年份:2017
- 资助金额:
$ 16.41万 - 项目类别:
相似国自然基金
优先流对中俄原油管道沿线多年冻土水热稳定性的影响机制研究
- 批准号:42301138
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
开放空间内部特征对公共生活行为的复合影响效应与使用者感知机理研究
- 批准号:52308052
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
市场公平竞争与企业发展:指标测度、影响机理与效应分析
- 批准号:72373155
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
气候变暖对青藏高原高寒草甸土壤病毒多样性和潜在功能的影响
- 批准号:32301407
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高温胁迫交叉锻炼对梭梭幼苗耐旱性影响的分子机理研究
- 批准号:32360079
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Effects of Aging on Neuronal Lysosomal Damage Responses Driven by CMT2B-linked Rab7
衰老对 CMT2B 相关 Rab7 驱动的神经元溶酶体损伤反应的影响
- 批准号:
10678789 - 财政年份:2023
- 资助金额:
$ 16.41万 - 项目类别:
Home foot-temperature monitoring through smart mat technology to improve access, equity, and outcomes in high-risk patients with diabetes
通过智能垫技术进行家庭足部温度监测,以改善高危糖尿病患者的可及性、公平性和结果
- 批准号:
10539209 - 财政年份:2023
- 资助金额:
$ 16.41万 - 项目类别:
Multifunctional Intelligent Hierarchical Fibrous Biomaterials Integrated with Multimodal Biosensing and Feedback-Based Interventions for Healing Infected Chronic Wounds
多功能智能分层纤维生物材料与多模式生物传感和基于反馈的干预措施相结合,用于治愈感染的慢性伤口
- 批准号:
10861531 - 财政年份:2023
- 资助金额:
$ 16.41万 - 项目类别:
Quantifying proteins in plasma do democratize personalized medicine for patients with type 1 diabetes
量化血浆中的蛋白质确实使 1 型糖尿病患者的个性化医疗民主化
- 批准号:
10730284 - 财政年份:2023
- 资助金额:
$ 16.41万 - 项目类别:
Acoustic-anatomic modeling and development of a patient-specific wearable therapeutic ultrasound device for peripheral arterial disease
针对外周动脉疾病的患者专用可穿戴超声治疗设备的声学解剖建模和开发
- 批准号:
10603253 - 财政年份:2023
- 资助金额:
$ 16.41万 - 项目类别: