Evaluating overlap and distinctiveness in neurocomputational loss and reward elements of the RDoC matrix
评估 RDoC 矩阵的神经计算损失和奖励元素的重叠和独特性
基本信息
- 批准号:10455059
- 负责人:
- 金额:$ 78.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-21 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AnhedoniaAnxietyBayesian ModelingBehavioralCategoriesCharacteristicsClinicalClinical DataCognitive TherapyComputer ModelsComputing MethodologiesCoupledDataDepressed moodDevelopmentDiagnosisDiagnosticDimensionsDiseaseElementsEnsureEnvironmentImageIndividualLeadLearningLinkManualsMeasuresMental DepressionMental HealthMental disordersModelingMoodsNational Institute of Mental HealthNegative ValenceNeurosciencesOutcomeParticipantPersonsPositioning AttributePositive ValenceProcessProtocols documentationPsychiatryPsychopathologyRandomizedResearch Domain CriteriaRewardsRoleSamplingScientistSpecificityStructureSymptomsTask PerformancesTechniquesTestingTimeTranslatingValidationVisitWorkarmbaseclinically relevantclinically significantimprovedmachine learning classificationnegative moodneurobehavioralneuroimagingnovelsymptom treatmenttrait
项目摘要
PROJECT SUMMARY/ABSTRACT
Evidence indicates that disruptions in loss and reward valuation exist across traditional psychiatric diagnostic
categories, and these elements are featured in the NIMH Research Domain Criteria matrix. However,
validating these features of the RDoC matrix and determining the translational utility of loss and reward
valuation requires at least three critical advances: i) understanding the elements’ relational structure (i.e., to
what extent are loss and reward valuation linked or distinct), ii) establishing the functional relevance of
valuation measures (i.e., which features of loss and reward valuation are related to which symptoms), and iii)
determining the stability or lack thereof of the elements and relationships between the elements (i.e.,
determining which valuation features are state-like vs trait-like). To work toward validating valuation elements
and their relevance to psychopathology, we respond to RFA-MH-19-242 (Computational Approaches for
Validating Dimensional Constructs of Relevance to Psychopathology). Specifically, we take a data-driven,
computational psychiatry approach merging clinical and experimental data to delineate relationships among
computationally derived components of loss and reward valuation and with symptoms in a large sample of
participants with clinically significant mood, anxiety, or anhedonia (Aim 1). In Aims 2 and 3, we incorporate a
mechanistic trial to assess whether components of and relationships between loss and reward valuation are
sensitive to change a) over time, b) following 12 sessions of instructed valuation (Aim 2), or c) following
cognitive behavioral therapy (Aim 3). If successful, we believe there is immense opportunity to bridge
behaviorally-oriented clinicians and computational (neuro)scientists and advance the field by mapping
symptoms to neuromechanistic disease processes and spurring the development of new neurobehaviorally-
guided treatment approaches. As required by the RFA, this application assesses multiple constructs (loss and
reward valuation constructs and learning subconstructs) in the Negative and Positive Valence RDoC domains,
using multiple tasks and levels of data.
项目摘要/摘要
证据表明,传统的精神病诊断中存在损失和奖励价值的中断
类别以及这些元素在NIMH研究领域标准矩阵中列出。然而,
验证RDOC矩阵的这些功能,并确定损失和奖励的翻译效用
价值至少需要三个关键进展:i)了解要素的关系结构(即
损失和奖励价值链接或不同的程度),ii)建立功能相关性
价值度量(即,损失和奖励值的特征与哪些符号有关),以及III)
确定元素之间的元素和关系的稳定性或缺乏(即
确定哪些值特征类似于状态与性状样)。致力于验证价值要素
以及它们与心理病理学的相关性,我们对RFA-MH-19-242做出了回应(计算方法
验证与心理病理学相关的维度结构)。具体来说,我们采用数据驱动
计算精神病学方法合并临床和实验数据以描述之间的关系
损失和奖励价值的计算派生成分,并在大量样本中具有符号
患有临床意义,焦虑或抗痛的参与者(AIM 1)。在目标2和3中,我们合并了
评估损失和奖励价值之间关系的机械试验是否是
敏感更改a)随着时间的流逝,b)在12个会话后的指示值(AIM 2)或c)之后
认知行为疗法(AIM 3)。如果成功,我们相信有巨大的机会桥接
以行为为导向的临床医生和计算(NEURO)科学家,并通过映射推进了现场
神经力学疾病过程的症状,并激发了新的神经行为的发展
指导治疗方法。根据RFA的要求,本申请评估多个结构(损失和
奖励价值构造和学习子构造)在负和正价rdoc域中,
使用多个任务和数据级别。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PEARL H CHIU其他文献
PEARL H CHIU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PEARL H CHIU', 18)}}的其他基金
Sub-second neurochemistry of error signals and affective processing in depression
抑郁症中错误信号和情感处理的亚秒神经化学
- 批准号:
10665721 - 财政年份:2022
- 资助金额:
$ 78.89万 - 项目类别:
Sub-second neurochemistry of error signals and affective processing in depression
抑郁症中错误信号和情感处理的亚秒神经化学
- 批准号:
10453962 - 财政年份:2022
- 资助金额:
$ 78.89万 - 项目类别:
Evaluating overlap and distinctiveness in neurocomputational loss and reward elements of the RDoC matrix
评估 RDoC 矩阵的神经计算损失和奖励元素的重叠和独特性
- 批准号:
10647805 - 财政年份:2021
- 资助金额:
$ 78.89万 - 项目类别:
Making connections among social ties, neural sensitivity to social signals, and outcomes
在社会关系、社会信号的神经敏感性和结果之间建立联系
- 批准号:
10490468 - 财政年份:2021
- 资助金额:
$ 78.89万 - 项目类别:
Evaluating overlap and distinctiveness in neurocomputational loss and reward elements of the RDoC matrix
评估 RDoC 矩阵的神经计算损失和奖励元素的重叠和独特性
- 批准号:
10312509 - 财政年份:2021
- 资助金额:
$ 78.89万 - 项目类别:
Social influences on choices in adolescent substance use
社会对青少年物质使用选择的影响
- 批准号:
10220529 - 财政年份:2021
- 资助金额:
$ 78.89万 - 项目类别:
Social influences on choices in adolescent substance use
社会对青少年物质使用选择的影响
- 批准号:
10378098 - 财政年份:2021
- 资助金额:
$ 78.89万 - 项目类别:
Making connections among social ties, neural sensitivity to social signals, and outcomes
在社会关系、对社会信号的神经敏感性和结果之间建立联系
- 批准号:
10200497 - 财政年份:2021
- 资助金额:
$ 78.89万 - 项目类别:
Making connections among social ties, neural sensitivity to social signals, and outcomes
在社会关系、对社会信号的神经敏感性和结果之间建立联系
- 批准号:
10629370 - 财政年份:2021
- 资助金额:
$ 78.89万 - 项目类别:
Social influences on choices in adolescent substance use
社会对青少年物质使用选择的影响
- 批准号:
10552640 - 财政年份:2021
- 资助金额:
$ 78.89万 - 项目类别:
相似国自然基金
电针激活大麻素CB1受体抑制mPFC–LS环路缓解应激性焦虑的机制
- 批准号:82374584
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
电针抑制AdipoR1蛋白磷酸化调控VTA相关环路功能改善焦虑症恐惧记忆障碍的机制研究
- 批准号:82374254
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
下丘脑室旁核精氨酸加压素神经元亚群调控焦虑行为的机制
- 批准号:32371068
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
m6A识别蛋白YTHDF3调控焦虑样行为的作用和分子机制研究
- 批准号:82301701
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
腹侧海马星形胶质细胞参与焦虑症发病的机制研究
- 批准号:82371513
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Neuro-computational predictors of treatment responsiveness in trauma-exposed Veterans.
遭受创伤的退伍军人治疗反应的神经计算预测因子。
- 批准号:
10580396 - 财政年份:2023
- 资助金额:
$ 78.89万 - 项目类别:
Evaluating overlap and distinctiveness in neurocomputational loss and reward elements of the RDoC matrix
评估 RDoC 矩阵的神经计算损失和奖励元素的重叠和独特性
- 批准号:
10647805 - 财政年份:2021
- 资助金额:
$ 78.89万 - 项目类别:
Evaluating overlap and distinctiveness in neurocomputational loss and reward elements of the RDoC matrix
评估 RDoC 矩阵的神经计算损失和奖励元素的重叠和独特性
- 批准号:
10312509 - 财政年份:2021
- 资助金额:
$ 78.89万 - 项目类别:
CRCNS: Neurocomputational Study of Reward-Related Decision-Making & Uncertainty
CRCNS:奖励相关决策的神经计算研究
- 批准号:
10246421 - 财政年份:2019
- 资助金额:
$ 78.89万 - 项目类别:
CRCNS: Neurocomputational Study of Reward-Related Decision-Making & Uncertainty
CRCNS:奖励相关决策的神经计算研究
- 批准号:
9916054 - 财政年份:2019
- 资助金额:
$ 78.89万 - 项目类别: