Atherogenic mechanisms of SVEP1, a Novel Human Coronary Artery Disease Locus
人类冠状动脉疾病基因座 SVEP1 的致动脉粥样硬化机制
基本信息
- 批准号:10449595
- 负责人:
- 金额:$ 0.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdhesionsAffectAffinityAnimal ModelArterial Fatty StreakAtherosclerosisBindingBiological AssayCardiovascular DiseasesCell Culture TechniquesCell Differentiation processCell LineageCell ProliferationCellsClinicalClonal ExpansionComplementCoronary ArteriosclerosisDataDevelopmentDifferentiation and GrowthDiseaseDisease modelEmbryoExhibitsExposure toExtracellular MatrixExtracellular Matrix ProteinsFoundationsGenesGeneticGenetic PolymorphismGenetic TranscriptionGenomicsGoalsHistologicHumanImmobilizationImmunofluorescence MicroscopyIntegrin BindingIntegrinsInvestigationKnock-outKnowledgeLabelLinkLipidsMeasuresMethodsModelingMolecularMusNucleosidesPathogenesisPathway interactionsPhenotypePhysiciansPlasmaPlayPreparationProcessProductionProtein RegionProteinsRecombinantsResourcesRiskRoleSARS-CoV-2 B.1.1.7ScientistSerumSignal PathwaySignal TransductionSmooth Muscle MyocytesSurface Plasmon ResonanceSystemTechniquesTestingTherapeuticVariantVascular Smooth Muscleatherogenesisbehavior influencebiobankcareercausal variantcell behaviorcell growthclinical applicationdisorder riskdrug developmentexperimental studygenome-widehuman diseaseimprovedin vivoinsightintegrin alpha9 beta1interestmortalitynotch proteinnovelnovel strategiesnovel therapeutic interventionnovel therapeuticsoverexpressionpreventreceptorrisk variantsingle-cell RNA sequencingsmall moleculesmall molecule inhibitortherapeutic candidatevascular smooth muscle cell proliferation
项目摘要
PROJECT SUMMARY/ABSTRACT
Cardiovascular disease is the leading cause of mortality in the world. It is critical to develop non-lipid
therapies to address cardiovascular disease since significant risk remains after successful lipid reduction. By
using human disease findings as a starting point for experimental investigation, we can focus our resources on
the mechanisms, pathways and therapeutic strategies that are the most applicable to human disease.
The Stitziel Lab discovered a variant in the extracellular matrix gene, SVEP1, that positively associates
with coronary artery disease. To test if SVEP1 is the causal gene in the risk locus, the lab first generated
athero-prone mice that were haploinsufficient for Svep1. These mice were found to exhibit less atherosclerotic
plaque burden than controls. Similarly, conditional deletion of Svep1 in mature vascular smooth muscle cells
(VSMCs) of mice resulted in dramatically less plaque burden. There is a growing body of evidence that VSMCs
play a central role in atherosclerosis, including several disease loci now linked to these cells. In addition to
producing SVEP1, VSMCs contain Notch and integrin receptors that we hypothesize bind to SVEP1. I
discovered that VSMCs grown on recombinant SVEP1 have increased Notch and integrin signaling, as well as
increased transcription of genes involved in cell proliferation and differentiation. SVEP1 induces robust
proliferation of primary VSMCs, which is dependent on both Notch and integrin α9β1 signaling. These
preliminary findings confirm the contribution of SVEP1 to atherosclerosis, potentially by influencing VSMC
proliferation and differentiation in a cell-autonomous manner. Despite these promising leads, the mechanisms
by which SVEP1 and its variants contribute to disease have yet to be fully characterized.
This project will answer critical, outstanding questions about the molecular and cellular mechanisms by
which SVEP1 promotes atherogenesis. I will use complementary molecular techniques, cell culture models and
animal models to address these questions. I first aim to determine if SVEP1 binds directly to Notch and integrin
receptors and, if so, which regions of the protein contribute to binding affinity. This experiment will also clarify
the contribution of each signaling pathway to the overall effects of SVEP1 on VSMCs. The leading risk variant
will be included in these studies, since the variant residue is within the putative integrin binding domain of
SVEP1. I will then interrogate the cellular mechanisms of SVEP1 in atherogenesis using a murine disease
model. This will include performing lineage tracing and single cell RNA sequencing with and without the
endogenous production of SVEP1 by neointimal VSMCs. This in vivo approach complements the proposed
molecular techniques by focusing on mechanisms in their pathophysiologic context. Successful completion of
these aims will reveal the mechanisms by which the common and risk allele of SVEP1 promote atherosclerosis
while providing insight into the pathogenesis of the world’s deadliest disease with potential to reveal new
therapeutic candidates.
项目概要/摘要
心血管疾病是世界上导致死亡的主要原因,发展非脂质至关重要。
治疗心血管疾病的方法,因为成功降脂后仍然存在显着的风险。
使用人类疾病发现作为实验研究的起点,我们可以将资源集中在
最适用于人类疾病的机制、途径和治疗策略。
Stitziel 实验室发现了细胞外基质基因 SVEP1 中的一个变体,该变体与
为了测试 SVEP1 是否是风险基因座中的致病基因,实验室首先生成了冠状动脉疾病的基因。
Svep1 单倍体不足的易患动脉粥样硬化的小鼠被发现表现出较少的动脉粥样硬化。
类似地,成熟血管平滑肌细胞中 Svep1 的条件性缺失。
小鼠的血管平滑肌细胞 (VSMC) 显着减少了斑块负担。越来越多的证据表明,血管平滑肌细胞 (VSMC) 可以显着减少斑块负担。
在动脉粥样硬化中发挥着核心作用,除了这些细胞之外,还包括目前与这些细胞相关的几个疾病位点。
产生 SVEP1 的 VSMC 含有 Notch 和整合素受体,我们追踪到它们与 SVEP1 结合。
发现在重组 SVEP1 上生长的 VSMC 增加了 Notch 和整合素信号传导,并且
参与细胞增殖和分化的基因转录增加可诱导强健。
原代 VSMC 的增殖,依赖于 Notch 和整合素 α9β1 信号传导。
初步研究结果证实 SVEP1 可能通过影响 VSMC 来促进动脉粥样硬化
尽管有这些有希望的线索,但其机制仍以细胞自主方式进行增殖和分化。
SVEP1 及其变体导致疾病的机制尚未完全确定。
该项目将通过以下方式回答有关分子和细胞机制的关键、悬而未决的问题
其中 SVEP1 会促进动脉粥样硬化形成,我将使用互补的分子技术、细胞培养模型和
我首先旨在确定 SVEP1 是否直接与 Notch 和整合素结合。
受体,如果是的话,蛋白质的哪些区域有助于结合亲和力。这个实验也将阐明。
每个信号通路对 SVEP1 对 VSMC 的总体影响的贡献。
将被纳入这些研究中,因为变体残基位于推定的整联蛋白结合域内
然后我将使用小鼠疾病来探究 SVEP1 在动脉粥样硬化形成中的细胞机制。
这将包括在有或没有的情况下进行谱系追踪和单细胞 RNA 测序。
新内膜 VSMC 内源性产生 SVEP1,这种体内方法补充了所提出的方法。
分子技术通过关注其病理生理学背景的机制成功完成。
这些目标将揭示 SVEP1 的常见和风险等位基因促进动脉粥样硬化的机制
同时深入了解世界上最致命疾病的发病机制,有可能揭示新的
治疗候选者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jared Scott Elenbaas其他文献
Jared Scott Elenbaas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jared Scott Elenbaas', 18)}}的其他基金
Atherogenic mechanisms of SVEP1, a Novel Human Coronary Artery Disease Locus
人类冠状动脉疾病基因座 SVEP1 的致动脉粥样硬化机制
- 批准号:
10441133 - 财政年份:2021
- 资助金额:
$ 0.25万 - 项目类别:
Atherogenic mechanisms of SVEP1, a Novel Human Coronary Artery Disease Locus
人类冠状动脉疾病基因座 SVEP1 的致动脉粥样硬化机制
- 批准号:
10664846 - 财政年份:2021
- 资助金额:
$ 0.25万 - 项目类别:
相似国自然基金
动脉粥样硬化发生中CAPN2影响内皮粘连的机制研究
- 批准号:82000254
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
层粘连蛋白受体第272位苏氨酸影响猪瘟病毒感染的分子机制
- 批准号:31902264
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
层粘连蛋白调控巨噬细胞和脂肪基质细胞影响肥胖脂肪组织重塑的机制
- 批准号:
- 批准年份:2019
- 资助金额:300 万元
- 项目类别:
大黄-桃仁介导AhR通路影响Th17/Treg和肠道菌群平衡改善肠粘膜屏障功能防治粘连性肠梗阻的机制研究
- 批准号:81804098
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
保留双层肌膜的功能性肌肉移植中S1P/S1PR1轴调节巨噬细胞迁移及分化对移植肌肉粘连与功能的影响
- 批准号:81871787
- 批准年份:2018
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
The Role of Bone Sialoprotein in Modulating Periodontal Development and Repair
骨唾液酸蛋白在调节牙周发育和修复中的作用
- 批准号:
10752141 - 财政年份:2023
- 资助金额:
$ 0.25万 - 项目类别:
2023 Elastin, Elastic Fibers and Microfibrils Gordon Research Conference and Gordon Research Seminar
2023年弹性蛋白、弹性纤维和微纤维戈登研究会议和戈登研究研讨会
- 批准号:
10754079 - 财政年份:2023
- 资助金额:
$ 0.25万 - 项目类别:
Translational Multimodal Strategy for Peri-Implant Disease Prevention
种植体周围疾病预防的转化多模式策略
- 批准号:
10736860 - 财政年份:2023
- 资助金额:
$ 0.25万 - 项目类别:
Phosphatase-dependent regulation of desmosome intercellular junctions
桥粒细胞间连接的磷酸酶依赖性调节
- 批准号:
10677182 - 财政年份:2023
- 资助金额:
$ 0.25万 - 项目类别:
Deciphering the role of mitochondrial/autophagy dysfunction in regulating inflammatory processes during AMD pathogenesis
破译线粒体/自噬功能障碍在 AMD 发病机制中调节炎症过程中的作用
- 批准号:
10664118 - 财政年份:2023
- 资助金额:
$ 0.25万 - 项目类别: