Endophenotype Network-based Approaches to Prediction and Population-based Validation of in Silico Drug Repurposing for Alzheimers Disease
基于内表型网络的方法对阿尔茨海默病的计算机药物重新利用进行预测和基于群体的验证
基本信息
- 批准号:10339430
- 负责人:
- 金额:$ 77.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-15 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AD transgenic miceAddressAdherenceAffectAlgorithmsAlzheimer&aposs DiseaseAlzheimer&aposs disease patientAlzheimer&aposs disease therapyAmericanAmyloidAmyloidosisAnimal ModelBayesian ModelingBiological AssayBiological AvailabilityBlood - brain barrier anatomyBrainCase-Control StudiesCause of DeathCellsClinical TrialsCombination Drug TherapyCombined Modality TherapyComplementComplexComputerized Medical RecordComputersDataDatabasesDementiaDiseaseDisease OutcomeDrug CombinationsDrug Delivery SystemsDrug TargetingDrug userEnhancersEvaluationFoundationsGenesGenomeHeritabilityHi-CHippocampus (Brain)HumanHuman GeneticsIn SituIn VitroIncidenceIntelligenceInterdisciplinary StudyInvestmentsKnowledgeLate Onset Alzheimer DiseaseMediatingMedicineMethodologyMicrogliaMolecularMultiomic DataMutateNetwork-basedNeuraxisNeurodegenerative DisordersNeurogliaPathogenesisPatient CarePatientsPenetrationPharmaceutical PreparationsPharmacoepidemiologyPharmacologic SubstancePharmacologyPharmacotherapyPhysiologicalPopulationPositioning AttributePredispositionPreventionPreventive therapyProteinsProteomePublicationsPublishingQuality of lifeRattusRecordsRegimenResearch PersonnelResectedRoleSystemTauopathiesTestingTherapeuticTransgenic AnimalsUnited StatesValidationWorkbasebioinformatics toolbrain endothelial cellbrain tissueclinical efficacyclinically relevantdementia caredrug developmentdrug discoverydrug efficacydrug repurposingdrug testingeffective therapyefficacious treatmentendophenotypefunctional genomicsgenetic architecturegenome wide association studygenome-widegenomic datahuman genome sequencinghuman interactomeimproved outcomein silicoin vivoindividual patientinformatics toolinnovationmouse modelmultiple omicsnovelnovel therapeuticspatient health informationpharmacokinetic modelpopulation basedpromoterrational designresearch and developmentrisk variantside effectsingle cell sequencingsingle-cell RNA sequencingsymptom treatmenttau Proteinstherapeutic developmenttooltranscriptometransgenic model of alzheimer diseasetrial designweb app
项目摘要
Although researchers have conducted more than 400 human trials for potential treatments of Alzheimer’s
disease (AD) in the last two decades, the attrition rate is estimated at over 99%. Furthermore, the “one gene,
one drug, one disease” reductionism-informed paradigm overlooks the inherent complexity of the disease and
continues to challenge drug discovery for AD. The predisposition to AD involves a complex, polygenic, and
pleiotropic genetic architecture. Recent studies have suggested that AD often has common underlying
mechanisms, sharing intermediate endophenotypes with many other complex diseases. These
endophenotypes, such as amyloidosis and tauopathy, have essential roles in many neurodegenerative diseases.
Systematic identification and characterization of novel underlying pathogenesis and disease modules, more so
than mutated genes, will serve as a foundation for generating actionable targets as input for drug repurposing
and rational design of combination therapy in AD. Integration of the genome, transcriptome, proteome, and the
human interactome are essential for such identification. Given our preliminary results, we posit that network-
based identification of novel risk genes and endophenotype modules that share degree between amyloid and
tau offer unexpected opportunities for drug therapy in AD comparing to targeting amyloid and tau separately. To
address the underlying hypothesis, we propose to establish an integrated interdisciplinary research plan with
three specific aims. Aim 1 will explore amyloid and tau-mediated endophenotype modules for AD -- We will test
the network module hypothesis for amyloid and tau using our recently developed Bayesian framework that
integrates multi-omics data (i.e., genome-wide association studies [GWAS] loci, single cell sequencing, and
human brain Hi-C data) and the human interactome. Aim 2 will be capable of searching existing drugs and
combination therapies for AD using network proximity approaches -- We will emphasize the uses of network
proximity approaches (i.e., Genome-wide Positioning Systems network [GPSnet]) to identify repurposable drugs
and efficacious combination regimens. This will be accomplished by integrating AD endophenotype module
findings, public drug-target databases, the human interactome, and the large-scale patient longitudinal Claims-
Electronic Medical Record data (over 200 million patients from the MarketScan database). Aim 3 will evaluate
brain penetration and target network engagement for repurposable drugs -- We will use the humanized in
vitro blood-brain barrier, resected brain tissues (ex vivo/in situ), and transgenic AD models (i.e., TgF344-AD rats)
to experimentally evaluate brain penetration and target network engagement. Evaluation will be based upon
network proximity to the AD-related endophenotype modules that are relevant to maximizing efficacy and to
minimizing side effects. The successful completion of this project will offer powerful network methodologies and
bioinformatics tools for prediction and population-based validation of in silico drug repurposing. It will also allow
for the identification of novel repurposable drugs and clinically relevant combination therapies toward AD trials.
尽管研究人员已经针对阿尔茨海默病的潜在治疗方法进行了 400 多项人体试验
在过去的二十年中,疾病(AD)的损耗率估计超过 99% 此外,“一个基因,
“一种药物,一种疾病”的还原论范式忽视了疾病固有的复杂性,
AD 的易感性涉及复杂的、多基因的和复杂的因素。
最近的研究表明 AD 通常具有共同的基础。
机制,与许多其他复杂疾病共享中间内表型。
内表型,例如淀粉样变性和 tau 蛋白病,在许多神经退行性疾病中具有重要作用。
系统识别和表征新的潜在发病机制和疾病模块,更是如此
比突变基因,将作为产生可操作靶标的基础,作为药物再利用的输入
以及基因组、转录组、蛋白质组和 AD 联合治疗的合理设计。
鉴于我们的初步结果,人类相互作用组对于这种识别至关重要。
基于淀粉样蛋白和淀粉样蛋白之间共享程度的新风险基因和内表型模块的鉴定
与分别针对淀粉样蛋白和 tau 蛋白相比,tau 蛋白为 AD 药物治疗提供了意想不到的机会。
为了解决潜在的假设,我们建议建立一个综合的跨学科研究计划
目标 1 将探索淀粉样蛋白和 tau 介导的 AD 内表型模块——我们将进行测试。
使用我们最近开发的贝叶斯框架的淀粉样蛋白和 tau 蛋白的网络模块假设
整合多组学数据(即全基因组关联研究 [GWAS] 位点、单细胞测序和
人类大脑 Hi-C 数据)和人类相互作用组 Aim 2 将能够搜索现有药物和药物。
使用网络邻近方法治疗 AD 的联合疗法——我们将强调网络的使用
邻近方法(即全基因组定位系统网络 [GPSnet])来识别可重复利用的药物
这将通过整合 AD 内表型模块来实现。
研究结果、公共药物靶点数据库、人类相互作用组和大规模患者纵向索赔-
电子病历数据(来自 MarketScan 数据库的超过 2 亿患者将进行评估)。
可重复利用药物的大脑渗透和目标网络参与——我们将在中使用人性化
体外血脑屏障、切除脑组织(离体/原位)和转基因 AD 模型(即 TgF344-AD 大鼠)
实验评估大脑渗透性和目标网络参与度。
与 AD 相关内表型模块的网络接近度,这些模块与最大化功效相关并
该项目的成功完成将提供强大的网络方法和效果。
用于预测和基于群体的计算机模拟药物再利用验证的生物信息学工具也将允许。
为 AD 试验确定新型可重复利用药物和临床相关联合疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Feixiong Cheng其他文献
Feixiong Cheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Feixiong Cheng', 18)}}的其他基金
Alzheimer's Disease and Related Dementia-like Sequelae of SARS-CoV-2 Infection: Virus-Host Interactome, Neuropathobiology, and Drug Repurposing
阿尔茨海默病和 SARS-CoV-2 感染的相关痴呆样后遗症:病毒-宿主相互作用组、神经病理生物学和药物再利用
- 批准号:
10661931 - 财政年份:2023
- 资助金额:
$ 77.14万 - 项目类别:
Microglial Activation and Inflammatory Endophenotypes Underlying Sex Differences of Alzheimer’s Disease
阿尔茨海默病性别差异背后的小胶质细胞激活和炎症内表型
- 批准号:
10755779 - 财政年份:2023
- 资助金额:
$ 77.14万 - 项目类别:
Precision Medicine Digital Twins for Alzheimer’s Target and Drug Discovery and Longevity
用于阿尔茨海默氏症靶点和药物发现及长寿的精准医学数字孪生
- 批准号:
10727793 - 财政年份:2023
- 资助金额:
$ 77.14万 - 项目类别:
TREM2 Genotype-Informed Drug Repurposing and Combination Therapy Design for Alzheimers Disease
基于 TREM2 基因型的阿尔茨海默病药物再利用和联合治疗设计
- 批准号:
10418459 - 财政年份:2022
- 资助金额:
$ 77.14万 - 项目类别:
TREM2 Genotype-Informed Drug Repurposing and Combination Therapy Design for Alzheimers Disease
基于 TREM2 基因型的阿尔茨海默病药物再利用和联合治疗设计
- 批准号:
10665664 - 财政年份:2022
- 资助金额:
$ 77.14万 - 项目类别:
Endophenotype Network-based Approaches to Prediction and Population-based Validation of In Silico Drug Repurposing for Alzheimer's Disease
基于内表型网络的方法对阿尔茨海默病的计算机药物重新利用进行预测和基于群体的验证
- 批准号:
10409194 - 财政年份:2020
- 资助金额:
$ 77.14万 - 项目类别:
Endophenotype Network-based Approaches to Prediction and Population-based Validation of in Silico Drug Repurposing for Alzheimers Disease
基于内表型网络的方法对阿尔茨海默病的计算机药物重新利用进行预测和基于群体的验证
- 批准号:
10569077 - 财政年份:2020
- 资助金额:
$ 77.14万 - 项目类别:
An individualized network medicine infrastructure for precision cardio-oncology
用于精准心脏肿瘤学的个性化网络医学基础设施
- 批准号:
9755498 - 财政年份:2017
- 资助金额:
$ 77.14万 - 项目类别:
An individualized network medicine infrastructure for precision cardio-oncology
用于精准心脏肿瘤学的个性化网络医学基础设施
- 批准号:
9371272 - 财政年份:2017
- 资助金额:
$ 77.14万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Mechanistic Study of Inspiratory Training in Childhood Asthma
儿童哮喘吸气训练机制研究
- 批准号:
10637048 - 财政年份:2023
- 资助金额:
$ 77.14万 - 项目类别:
iTEST: Introspective Accuracy as a Novel Target for Functioning in Psychotic Disorders
iTEST:内省准确性作为精神障碍功能的新目标
- 批准号:
10642405 - 财政年份:2023
- 资助金额:
$ 77.14万 - 项目类别:
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
- 批准号:
10642607 - 财政年份:2023
- 资助金额:
$ 77.14万 - 项目类别:
Novel application of pharmaceutical AMD3100 to reduce risk in opioid use disorder: investigations of a causal relationship between CXCR4 expression and addiction vulnerability
药物 AMD3100 降低阿片类药物使用障碍风险的新应用:CXCR4 表达与成瘾脆弱性之间因果关系的研究
- 批准号:
10678062 - 财政年份:2023
- 资助金额:
$ 77.14万 - 项目类别: