An individualized network medicine infrastructure for precision cardio-oncology

用于精准心脏肿瘤学的个性化网络医学基础设施

基本信息

  • 批准号:
    9371272
  • 负责人:
  • 金额:
    $ 8.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2018-06-30
  • 项目状态:
    已结题

项目摘要

The growing awareness of cardiac dysfunction by cancer treatment has led to the emerging field of cardio- oncology. However, there are no guidelines in terms of how to prevent and treat the new cardiotoxicity in cancer survivors due to the limited experimental assays. Network medicine – a discipline that seeks to redefine disease and therapeutics from an integrated perspective using systems biology and network science – offers a non-invasive way to identify actionable biomarkers for cardio-oncology. This five-year career development program will develop state-of-the-art systems pharmacology and network medicine approaches in cardio- oncology that focuses on screening, monitoring, and treating cancer survivors with cardiac dysfunction resulting from cancer treatment for facilitating the career goals to the principal investigator (PI), Dr. Feixiong Cheng. With this application, the PI will adhere to a rigorous mentored training curriculum in Northeastern University, Dana-Farber Cancer Institute, and Harvard’s Brigham and Women's Hospital (BWH). The PI’s mentor, Dr. Albert-Laszlo Barabasi, one of the world’s leading experts in the field of network science, has strong collaborative relations with his co-mentors, Drs. Joseph Loscalzo and Sebastian Schneeweiss, in BWH. Dr. Loscalzo, an influential cardiologist, will provide the PI with cardiovascular biology training, career guidance, and scientific advice on the execution of the proposed research plan. Dr. Schneeweiss, a premier pharmacoepidemiologist, will provide the PI with training on applying computationally intensive algorithms for analyzing patient longitudinal big data. This program proposes two specific aims: 1) Development of a state-of- the-art systems pharmacology approach, namely genome-wide positioning systems drug network (GPSDnet) algorithm, to illuminate the landscape of cardiotoxicity to various cancer agents (K99) - The central, unifying hypothesis of GPSDnet is that an integrated, mechanism-based, network approach which incorporates next- generation sequencing data, drug-target networks, drug-induced transcriptome, the human interactome, along with adverse event reports from the FDA’s Adverse Event Reporting System and patient longitudinal data, will prove a novel and effective way for evaluation of cardiotoxicity for current cancer therapies (e.g., multitargeted kinase inhibitors) and new therapies (e.g., immune checkpoint inhibitors); 2) Cardio-oncology perturbation, diagnosis, prevention, and patient care (R00) - The Aim 2 will emphasize the use of network medicine techniques to identify actionable biomarkers (e.g., comorbidity network modules shared by cancer cells and cardiovascular cells/systems) for advancing the characterization of cardio-oncology heterogeneity, thereby achieving the goal of coordinated, patient-centered strategies for treatment and long-term cardiovascular care (e.g., heart failure and coronary artery disease) for cancer survivors. In summary, approval of this K99 award will be invaluable in establishing Dr. Cheng as an independent investigator by exploiting the promise of precision medicine that is in need of experts specializing in network medicine for cardio-oncology.
人们对癌症治疗引起的心脏功能障碍的认识不断提高,导致了心脏领域的新兴领域 然而,目前还没有关于如何预防和治疗新的心脏毒性的指南。 网络医学是一门寻求重新定义的学科。 使用系统生物学和网络科学从综合角度看待疾病和治疗——提供了 以非侵入性方式识别心脏肿瘤学的可行生物标志物。这五年的职业发展。 该计划将开发心脏领域最先进的系统药理学和网络医学方法 专注于筛查、监测和治疗患有心脏功能障碍的癌症幸存者的肿瘤学 为促进首席研究员 (PI) Feixiong 博士实现职业目标而进行的癌症治疗 通过此申请,PI 将遵守东北大学严格的指导培训课程。 大学、达纳法伯癌症研究所和哈佛大学布莱根妇女医院 (BWH)。 导师 Albert-Laszlo Barabasi 博士是网络科学领域世界领先的专家之一。 与他在 BWH 的共同导师 Joseph Loscalzo 博士和 Sebastian Schneeweiss 博士建立了密切的合作关系。 Loscalzo 博士是一位颇具影响力的心脏病专家,他将为 PI 提供心血管生物学培训、职业指导、 以及关于执行拟议研究计划的科学建议。 药物流行病学家将为 PI 提供应用计算密集型算法的培训 该计划提出了两个具体目标:1)发展现状。 最先进的系统药理学方法,即全基因组定位系统药物网络(GPSDnet) 算法,阐明各种癌症药物的心脏毒性 (K99) - 中央的、统一的 GPSDnet 的假设是一种集成的、基于机制的网络方法,其中包含下一步: 一代测序数据、药物靶标网络、药物诱导转录组、人类相互作用组等 借助 FDA 不良事件报告系统的不良事件报告和患者纵向数据,将 证明了一种新颖且有效的方法来评估当前癌症疗法的心脏毒性(例如,多靶点 2) 心脏肿瘤学扰动, 诊断、预防和患者护理 (R00) - Aim 2 将强调网络医学的使用 识别可操作的生物标志物的技术(例如,癌细胞共享的共病网络模块和 心血管细胞/系统),以推进心脏肿瘤异质性的表征,从而 实现协调的、以患者为中心的治疗和长期心血管护理策略的目标 (例如,心力衰竭和冠状动脉疾病)癌症幸存者总而言之,批准该 K99 奖项。 通过利用以下承诺,对于将程博士确立为独立研究者将具有无价的价值 精准医疗需要专门从事心血管肿瘤网络医学的专家。

项目成果

期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A retrospective analysis of cardiovascular adverse events associated with immune checkpoint inhibitors.
  • DOI:
    10.1186/s40959-021-00106-x
  • 发表时间:
    2021-05-28
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lal JC;Brown SA;Collier P;Cheng F
  • 通讯作者:
    Cheng F
Quantitative and Systems Pharmacology. 1. In Silico Prediction of Drug-Target Interactions of Natural Products Enables New Targeted Cancer Therapy.
定量和系统药理学。
In Silico Insights into Protein-protein Interaction Disruptive Mutations in the PCSK9-LDLR complex.
在计算机上深入了解 PCSK9-LDLR 复合物中蛋白质-蛋白质相互作用破坏性突变。
Machine Learning-Based Risk Assessment for Cancer Therapy-Related Cardiac Dysfunction in 4300 Longitudinal Oncology Patients.
  • DOI:
    10.1161/jaha.120.019628
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Zhou Y;Hou Y;Hussain M;Brown SA;Budd T;Tang WHW;Abraham J;Xu B;Shah C;Moudgil R;Popovic Z;Cho L;Kanj M;Watson C;Griffin B;Chung MK;Kapadia S;Svensson L;Collier P;Cheng F
  • 通讯作者:
    Cheng F
Quantitative and Systems Pharmacology 3. Network-Based Identification of New Targets for Natural Products Enables Potential Uses in Aging-Associated Disorders.
  • DOI:
    10.3389/fphar.2017.00747
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Fang J;Gao L;Ma H;Wu Q;Wu T;Wu J;Wang Q;Cheng F
  • 通讯作者:
    Cheng F
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Feixiong Cheng其他文献

Feixiong Cheng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Feixiong Cheng', 18)}}的其他基金

Alzheimer's Disease and Related Dementia-like Sequelae of SARS-CoV-2 Infection: Virus-Host Interactome, Neuropathobiology, and Drug Repurposing
阿尔茨海默病和 SARS-CoV-2 感染的相关痴呆样后遗症:病毒-宿主相互作用组、神经病理生物学和药物再利用
  • 批准号:
    10661931
  • 财政年份:
    2023
  • 资助金额:
    $ 8.58万
  • 项目类别:
Microglial Activation and Inflammatory Endophenotypes Underlying Sex Differences of Alzheimer’s Disease
阿尔茨海默病性别差异背后的小胶质细胞激活和炎症内表型
  • 批准号:
    10755779
  • 财政年份:
    2023
  • 资助金额:
    $ 8.58万
  • 项目类别:
Precision Medicine Digital Twins for Alzheimer’s Target and Drug Discovery and Longevity
用于阿尔茨海默氏症靶点和药物发现及长寿的精准医学数字孪生
  • 批准号:
    10727793
  • 财政年份:
    2023
  • 资助金额:
    $ 8.58万
  • 项目类别:
TREM2 Genotype-Informed Drug Repurposing and Combination Therapy Design for Alzheimers Disease
基于 TREM2 基因型的阿尔茨海默病药物再利用和联合治疗设计
  • 批准号:
    10418459
  • 财政年份:
    2022
  • 资助金额:
    $ 8.58万
  • 项目类别:
TREM2 Genotype-Informed Drug Repurposing and Combination Therapy Design for Alzheimers Disease
基于 TREM2 基因型的阿尔茨海默病药物再利用和联合治疗设计
  • 批准号:
    10665664
  • 财政年份:
    2022
  • 资助金额:
    $ 8.58万
  • 项目类别:
Endophenotype Network-based Approaches to Prediction and Population-based Validation of In Silico Drug Repurposing for Alzheimer's Disease
基于内表型网络的方法对阿尔茨海默病的计算机药物重新利用进行预测和基于群体的验证
  • 批准号:
    10409194
  • 财政年份:
    2020
  • 资助金额:
    $ 8.58万
  • 项目类别:
Endophenotype Network-based Approaches to Prediction and Population-based Validation of in Silico Drug Repurposing for Alzheimers Disease
基于内表型网络的方法对阿尔茨海默病的计算机药物重新利用进行预测和基于群体的验证
  • 批准号:
    10339430
  • 财政年份:
    2020
  • 资助金额:
    $ 8.58万
  • 项目类别:
Endophenotype Network-based Approaches to Prediction and Population-based Validation of in Silico Drug Repurposing for Alzheimers Disease
基于内表型网络的方法对阿尔茨海默病的计算机药物重新利用进行预测和基于群体的验证
  • 批准号:
    10569077
  • 财政年份:
    2020
  • 资助金额:
    $ 8.58万
  • 项目类别:
An individualized network medicine infrastructure for precision cardio-oncology
用于精准心脏肿瘤学的个性化网络医学基础设施
  • 批准号:
    9755498
  • 财政年份:
    2017
  • 资助金额:
    $ 8.58万
  • 项目类别:

相似国自然基金

儿童药品不良反应主动监测中时序处理策略的方法学研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于真实世界医疗大数据的中西药联用严重不良反应监测与评价关键方法研究
  • 批准号:
    82274368
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于隐狄利克雷分配模型的心血管系统药物不良反应主动监测研究
  • 批准号:
    82273739
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于真实世界数据的创新药品上市后严重罕见不良反应评价关键方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
OR10G7错义突变激活NLRP3炎症小体致伊马替尼严重皮肤不良反应的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目

相似海外基金

Nursing homes' visitation bans during the COVID-19 pandemic: Effectiveness and consequences.
COVID-19 大流行期间疗养院的探视禁令:有效性和后果。
  • 批准号:
    10635829
  • 财政年份:
    2023
  • 资助金额:
    $ 8.58万
  • 项目类别:
Pre-clinical testing of low intensity ultrasound as novel strategy to prevent paclitaxel-induced hair follicle damage in a humanized mouse model of chemotherapy-induced alopecia
低强度超声的临床前测试作为预防化疗引起的脱发人源化小鼠模型中紫杉醇引起的毛囊损伤的新策略
  • 批准号:
    10722518
  • 财政年份:
    2023
  • 资助金额:
    $ 8.58万
  • 项目类别:
Traumatic Brain Injury Anti-Seizure Prophylaxis in the Medicare Program
医疗保险计划中的创伤性脑损伤抗癫痫预防
  • 批准号:
    10715238
  • 财政年份:
    2023
  • 资助金额:
    $ 8.58万
  • 项目类别:
Transovarial transmission of yersinia pestis in fleas
跳蚤中鼠疫耶尔森氏菌的跨卵巢传播
  • 批准号:
    10727534
  • 财政年份:
    2023
  • 资助金额:
    $ 8.58万
  • 项目类别:
Impact of Body Composition and Related Inflammatory and Immune States on Prognosis of Non-Muscle Invasive Bladder Cancer
身体成分及相关炎症和免疫状态对非肌肉浸润性膀胱癌预后的影响
  • 批准号:
    10674401
  • 财政年份:
    2023
  • 资助金额:
    $ 8.58万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了