Precision Medicine Digital Twins for Alzheimer’s Target and Drug Discovery and Longevity
用于阿尔茨海默氏症靶点和药物发现及长寿的精准医学数字孪生
基本信息
- 批准号:10727793
- 负责人:
- 金额:$ 48.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2025-08-14
- 项目状态:未结题
- 来源:
- 关键词:ATAC-seqAccelerationAddressAffectAgingAlgorithmsAlzheimer&aposs DiseaseAlzheimer&aposs disease patientAlzheimer&aposs disease related dementiaAmericanArtificial IntelligenceAtlasesBindingBrainCause of DeathCellsChromatinClinicClinicalCodeComplexCpG IslandsDataData ScienceData SetDatabasesDementiaDevelopmentDimensionsDiseaseDisease OutcomeDisease ProgressionDisease modelDrug CompoundingDrug TargetingElectronic Health RecordEnhancersEthicsFAIR principlesFoundationsGene ExpressionGenesGeneticGenomicsGenotype-Tissue Expression ProjectGoalsGraphHeterogeneityHistonesHumanHuman GeneticsHuman GenomeIncidenceIndividualInduced pluripotent stem cell derived neuronsIntelligenceKnowledge PortalLigandsLongevityMachine LearningMapsMedicalMedicineModelingNerve DegenerationNeurodegenerative DisordersPathogenesisPatientsPhasePositioning AttributePredispositionProcessPromoter RegionsProteinsProteomicsQuantitative Trait LociSystemTechnologyTestingTherapeuticTranslatingUnited StatesUntranslated RNAVisualizationautoencodercell typedata warehousedeep learningdesigndigital twindrug candidatedrug discoverydrug repurposingeffective therapyexome sequencinggenetic architecturegenome wide association studygenome-widegenomic datahuman genome sequencinginnovationlongitudinal analysismultimodal datamultiple omicsnovelprecision medicinepromoterreceptorsingle cell analysissingle-cell RNA sequencingsuccesstherapeutic developmenttooltranscription factortranscriptome sequencingtranscriptomicstranslational study
项目摘要
PROJECT SUMMARY
Alzheimer’s disease (AD) is a devastating neurodegenerative disease and it is lack of effective disease-modifying
treatments. Medical digital twins are computational disease models for target identification and drug discovery.
However, how to organize and prioritize drug targets and candidate AD treatments in digital twins at drugome-
wide and genome-wide scales are challenging. Our team developed AlzGPS, a genome-wide positioning
systems platform to catalyze multi-omics for AD drug discovery. We also created The Alzheimer’s Cell Atlas
(TACA), a single-cell transcriptomics and network pathobiology map for target identification and drug repurposing
at brain cellulome-wide scales. We demonstrated that systematic identification and characterization of underlying
pathogenesis and disease progression at cellulome- and genome-wide scales, will serve as a foundation for
identifying and validating disease-modifying targets and treatments in AD or even longevity. We hypothesize that
the digital twins tools for coordinated acquisition and seamless curation of multimodal data will be transferrable
to any aging therapeutic development domains and will be applicable beyond digital twins, to expand artificial
intelligence (AI) and machine learning (AI\ML) workflows in AD target and drug discovery. We thus posit that a
drugome-wide and genome-wide, precision medicine digital twins platform that identifies likely causal AD genes
and networks from human genome sequencing and multi-omics findings, enables a more complete mechanistic
understanding of AD pathobiology and the rapid development of disease-modifying targets and treatments with
great success. Our goal is to ethically acquire and responsibly disseminate comprehensive patient-specific
multimodal data sets, which will form the basis for scientific, technological, and translational studies to design
and evaluate digital twins, and explore their integration to AD target and drug discovery. Aim 1 will develop and
test an interpretable mechanistic deep learning framework to identify disease-modifying targets and networks
for AD and longevity. We will develop a human protein-protein interactome network topology-based deep
learning framework (R21 phase) and identify putative drug targets for AD and longevity through integrating
multimodal data (genetics, genomics, transcriptomics, proteomics, and clinical) from AD sequencing project
(ADSP), the AD knowledge portal, Longevity Consortium, and the Accelerating Medicines Partnership-AD (R33
phase). Aim 2 will develop and apply AI\ML technologies for collaborative end-to-end analyses of single-cell
multi-ome data. We will develop and implement a graph embedded gaussian mixture variational autoencoder
network algorithm (R21 phase) and identify AD cell type-specific genes/targets, regulatory networks, and ligand-
receptor interactions (R33 phase). Aim 3 will implement and test precision medicine Digital Twins for drug
repurposing in AD and AD-related dementia (R33 phase). All Digital Twins codes, toolbox packages, and data
developed will be shared through the ADSP and the AD knowledge portal based on the FAIR principles. This
project is highly feasible and potentially transformative for both Alzheimer’s data science and precision medicine.
项目概要
阿尔茨海默病(AD)是一种毁灭性的神经退行性疾病,目前缺乏有效的疾病缓解方法
医学数字孪生是用于目标识别和药物发现的计算疾病模型。
然而,如何在药物组的数字孪生中组织和优先考虑药物靶点和候选 AD 治疗方法 -
我们的团队开发了 AlzGPS,一种全基因组定位技术。
催化 AD 药物发现的多组学系统平台 我们还创建了阿尔茨海默病细胞图谱。
(TACA),用于靶点识别和药物再利用的单细胞转录组学和网络病理学图谱
我们证明了潜在的系统识别和表征。
细胞组和基因组范围内的发病机制和疾病进展,将作为基础
识别和验证 AD 甚至长寿的疾病缓解目标和治疗方法。
用于协调采集和无缝管理多模式数据的数字孪生工具将是可转让的
应用于任何衰老治疗开发领域,并将适用于数字孪生之外的领域,以扩展人工
AD 靶点和药物发现中的智能 (AI) 和机器学习 (AI\ML) 工作流程。
全药物组和全基因组精准医学数字孪生平台,可识别可能的 AD 致病基因
来自人类基因组测序和多组学研究结果的网络,可以实现更完整的机制
对 AD 病理学的了解以及疾病缓解目标和治疗方法的快速发展
我们的目标是合乎道德地获取并负责任地传播针对患者的全面信息。
多模式数据集,这将构成科学、技术和转化研究设计的基础
评估数字孪生,并探索它们与 AD 靶点和药物发现的整合。Aim 1 将开发和开发。
测试可解释的机械深度学习框架来识别疾病缓解目标和网络
我们将开发一种基于人类蛋白质-蛋白质相互作用网络拓扑的深度疗法。
学习框架(R21 阶段)并通过整合确定 AD 和长寿的假定药物靶标
来自 AD 测序项目的多模式数据(遗传学、基因组学、转录组学、蛋白质组学和临床)
(ADSP)、AD 知识门户、长寿联盟和加速药物合作伙伴-AD (R33
目标 2 将开发和应用 AI\ML 技术来进行单细胞的协作式端到端分析
我们将开发并实现一个图形嵌入式高斯混合变分自动编码器。
网络算法(R21 阶段)并识别 AD 细胞类型特异性基因/靶标、调控网络和配体
受体相互作用(R33阶段)将实施和测试药物的精准医学数字孪生。
重新利用 AD 和 AD 相关痴呆症(R33 阶段)。
开发的内容将根据公平原则通过 ADSP 和 AD 知识门户共享。
该项目对于阿尔茨海默氏症数据科学和精准医学来说具有高度的可行性和潜在的变革性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Feixiong Cheng其他文献
Feixiong Cheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Feixiong Cheng', 18)}}的其他基金
Alzheimer's Disease and Related Dementia-like Sequelae of SARS-CoV-2 Infection: Virus-Host Interactome, Neuropathobiology, and Drug Repurposing
阿尔茨海默病和 SARS-CoV-2 感染的相关痴呆样后遗症:病毒-宿主相互作用组、神经病理生物学和药物再利用
- 批准号:
10661931 - 财政年份:2023
- 资助金额:
$ 48.25万 - 项目类别:
Microglial Activation and Inflammatory Endophenotypes Underlying Sex Differences of Alzheimer’s Disease
阿尔茨海默病性别差异背后的小胶质细胞激活和炎症内表型
- 批准号:
10755779 - 财政年份:2023
- 资助金额:
$ 48.25万 - 项目类别:
TREM2 Genotype-Informed Drug Repurposing and Combination Therapy Design for Alzheimers Disease
基于 TREM2 基因型的阿尔茨海默病药物再利用和联合治疗设计
- 批准号:
10418459 - 财政年份:2022
- 资助金额:
$ 48.25万 - 项目类别:
TREM2 Genotype-Informed Drug Repurposing and Combination Therapy Design for Alzheimers Disease
基于 TREM2 基因型的阿尔茨海默病药物再利用和联合治疗设计
- 批准号:
10665664 - 财政年份:2022
- 资助金额:
$ 48.25万 - 项目类别:
Endophenotype Network-based Approaches to Prediction and Population-based Validation of In Silico Drug Repurposing for Alzheimer's Disease
基于内表型网络的方法对阿尔茨海默病的计算机药物重新利用进行预测和基于群体的验证
- 批准号:
10409194 - 财政年份:2020
- 资助金额:
$ 48.25万 - 项目类别:
Endophenotype Network-based Approaches to Prediction and Population-based Validation of in Silico Drug Repurposing for Alzheimers Disease
基于内表型网络的方法对阿尔茨海默病的计算机药物重新利用进行预测和基于群体的验证
- 批准号:
10339430 - 财政年份:2020
- 资助金额:
$ 48.25万 - 项目类别:
Endophenotype Network-based Approaches to Prediction and Population-based Validation of in Silico Drug Repurposing for Alzheimers Disease
基于内表型网络的方法对阿尔茨海默病的计算机药物重新利用进行预测和基于群体的验证
- 批准号:
10569077 - 财政年份:2020
- 资助金额:
$ 48.25万 - 项目类别:
An individualized network medicine infrastructure for precision cardio-oncology
用于精准心脏肿瘤学的个性化网络医学基础设施
- 批准号:
9755498 - 财政年份:2017
- 资助金额:
$ 48.25万 - 项目类别:
An individualized network medicine infrastructure for precision cardio-oncology
用于精准心脏肿瘤学的个性化网络医学基础设施
- 批准号:
9371272 - 财政年份:2017
- 资助金额:
$ 48.25万 - 项目类别:
相似国自然基金
高功率激光驱动低β磁重联中磁岛对电子加速影响的研究
- 批准号:12305275
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
U型离散顺流火蔓延非稳态热输运机理与加速机制研究
- 批准号:52308532
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
实施科学视角下食管癌加速康复外科证据转化障碍机制与多元靶向干预策略研究
- 批准号:82303925
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
TWIST1介导的ITGBL1+肿瘤相关成纤维细胞转化加速结肠癌动态演化进程机制及其预防干预研究
- 批准号:82373112
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
NOTCH3/HLF信号轴驱动平滑肌细胞表型转化加速半月板退变的机制研究
- 批准号:82372435
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Deciphering molecular mechanisms controlling age-associated uterine adaptabilityto pregnancy
破译控制与年龄相关的子宫妊娠适应性的分子机制
- 批准号:
10636576 - 财政年份:2023
- 资助金额:
$ 48.25万 - 项目类别:
Reliable post hoc interpretations of deep learning in genomics
基因组学深度学习的可靠事后解释
- 批准号:
10638753 - 财政年份:2023
- 资助金额:
$ 48.25万 - 项目类别:
Defining molecular mechanisms by which stimulant evoked dopamine drives inflammation and neuronal dysfunction in neuroHIV
定义兴奋剂诱发多巴胺驱动神经艾滋病毒炎症和神经元功能障碍的分子机制
- 批准号:
10685160 - 财政年份:2023
- 资助金额:
$ 48.25万 - 项目类别:
Advancing Transplantation Tolerance in Nonhuman Primates
提高非人类灵长类动物的移植耐受性
- 批准号:
10622205 - 财政年份:2023
- 资助金额:
$ 48.25万 - 项目类别:
Role of transposon regulation in the negligible senescence of S. mediterranea
转座子调控在地中海链霉菌可忽略的衰老中的作用
- 批准号:
10665794 - 财政年份:2022
- 资助金额:
$ 48.25万 - 项目类别: