Unraveling the role of endothelium in chemotherapy-induced cardiotoxicity
揭示内皮在化疗引起的心脏毒性中的作用
基本信息
- 批准号:10340657
- 负责人:
- 金额:$ 39.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAcuteAddressAffectAftercareAnimal ModelAnthracyclineAntineoplastic AgentsAtherosclerosisAttentionBiochemicalBiomedical EngineeringCRISPR/Cas technologyCalciumCardiacCardiac MyocytesCardiotoxicityCardiovascular PhysiologyCardiovascular systemCellsChromatinChronicCoculture TechniquesCollaborationsCommunicationComplexComputational BiologyDataDevelopmentDoseDoxorubicinEndothelial CellsEndotheliumEnvironmentExhibitsExposure toFunctional disorderGene ExpressionGenerationsGenesGenomic DNAGoalsHealthHeartHeart failureHumanImpairmentKineticsKnowledgeLeadLeft Ventricular Ejection FractionLigandsMalignant NeoplasmsMediatingMembraneMitochondriaModelingMolecularMorbidity - disease rateMusMuscle CellsMyocardial dysfunctionOncologyOrganParacrine CommunicationPathogenesisPathologicPathologyPatientsPharmaceutical PreparationsPharmacologyPhenotypePhysiologyPlayPositioning AttributeReactive Oxygen SpeciesResearch PersonnelRoleSignal TransductionSiteTherapeuticTopoisomerase IITrastuzumabType I DNA TopoisomerasesVascular DiseasesWingWorkbasecardiac tissue engineeringcell injurycell typechemotherapyendothelial stem cellgene regulatory networkgenome editingheart cellimprovedin vivoinduced pluripotent stem cellinduced pluripotent stem cell technologyinsightinterdisciplinary approachmechanical propertiesmortalitymouse modelmultidisciplinarymyocardial injurynext generation sequencingnovelparacrinepredictive modelingpromoterreceptorresponseside effectsingle cell technologysingle-cell RNA sequencingstem cell biologytooltranscription factor
项目摘要
Project Summary/Abstract
Doxorubicin is a highly effective chemotherapy drug commonly used to treat multiple cancers, but its use is
limited due to cardiotoxicity. Cardiotoxicity can range from asymptomatic reduction in left ventricular ejection
fraction to highly symptomatic heart failure (Class III to IV). Acute doxorubicin-induced cardiotoxicity (DIC)
occurs in ~11% of patients, and long-term cardiotoxic side effects can develop in ~36% of patients up to 10
years after treatment. Despite being the most effective class of anti-cancer drug and widely used since last five
decades, the molecular mechanisms that underly DIC remain poorly understood. To date, three major inter-
related mechanisms for cardiotoxic effects of doxorubicin have been proposed: (i) generation of reactive
oxygen species (ROS) and subsequent membrane damage, (ii) inhibition of topoisomerase II-β (TOP2B)
topoisomerase I mitochondrial (TOP1MT), and (iii) modulation of intracellular calcium release. However, as
cardiotoxicity in DIC patients may not emerge for years or decades, a better understanding of the different
mechanisms in DIC across different cardiac cell types and their crosstalk can have significant implications on
the search for therapeutics.
The endothelium is a critical component of the cardiovascular system that forms a protective barrier for CMs
and releases paracrine factors to maintain CM health and function. It has been shown that DOX disrupts the
normal endothelial physiology by damaging ECs that can lead to the development of severe chronic vascular
diseases such as atherosclerosis, which often leads to cardiac dysfunction. With the knowledge that
dysfunctional ECs can have a negative impact on CM function, we need a better understanding of the integral
role of ECs in the development of doxorubicin-induced myocardial injury. Despite impressive progress, little
attention has been given to the potential importance of cell-to-cell signaling between ECs and CMs, despite the
fact that ECs serve a paracrine function to enhance signaling in CMs, especially in context to pharmacological
stimulation. This knowledge gap impedes our comprehensive understanding of organ dysfunction at a multi-
cellular level. The overarching goal of our proposal is to use a multidisciplinary approach that integrates human
iPSCs, bioengineering tools, and NGS to gain novel insights into the pathogenesis of DIC. We will pursue three
specific aims. In Aim 1: we will establish an experimental platform to study the role of ECs in DIC. For this, we
will recapitulate the EC-CM crosstalk in DIC patient’s iPSC-derived cells with 3D engineered heart tissues
(EHTs). In Aim 2: we will decipher the mechanism of EC-CM crosstalk in EHTs treated with DOX using single-
cell approaches (scRNA-seq and scATAC-seq). In Aim 3: we will validate the key regulatory players of EC-CM
crosstalk in an animal model of DIC. Our proposal is supported by compelling preliminary data from a multi-
disciplinary team of investigators. We believe we are well positioned to achieve the project goals within five
years.
项目摘要/摘要
阿霉素是一种通常用于治疗多种癌症的高效化学疗法药物,但其使用是
由于心脏毒性而受到限制。心脏毒性的范围从左心室射血的不对称降低范围
症状性心力衰竭的分数(III级至IV)。急性阿霉素诱导的心脏毒性(DIC)
发生在约11%的患者中,长期心脏毒性副作用可能会在约36%的患者中发展出来
治疗后几年。尽管是最有效的抗癌药物,并且自从过去五个以来广泛使用
几十年来,DIC下的分子机制仍然很少理解。迄今为止,三个主要之间
已经提出了阿霉素的心脏毒性作用的相关机制:(i)产生反应性
氧(ROS)和随后的膜损伤,(II)抑制拓扑异构酶II-β(TOP2B)
拓扑异构酶I线粒体(TOP1MT)和(iii)调节细胞内钙释放。但是,如
DIC患者的心脏毒性可能不会出现数年或几十年,对不同的了解
跨不同心脏细胞类型的DIC机制及其串扰可能对
寻找治疗。
内皮是心血管系统的关键组成部分,它形成了CMS的受保护障碍
并释放旁分泌因素以维持CM健康和功能。已经表明,DOX破坏了
正常的内皮生理学通过损害EC,从而导致严重慢性血管的发展
诸如动脉粥样硬化之类的疾病通常会导致心脏功能障碍。知道
功能失调的EC可能会对CM功能产生负面影响,我们需要更好地了解积分
EC在阿霉素诱导的心肌损伤中的作用。尽管进步令人印象深刻,但很少
注意EC和CMS之间的细胞间信号传导的潜在重要性,dospite
ECS具有旁分泌功能以增强CMS的信号传导的事实,尤其是在药物的背景下
刺激。这种知识差距阻碍了我们对器官功能障碍的全面理解
细胞水平。我们提案的总体目标是使用一种融合人类的多学科方法
IPSC,生物工程工具和NGS,以获得对DIC发病机理的新见解。我们将追求三个
具体目标。在AIM 1中:我们将建立一个实验平台来研究EC在DIC中的作用。为此,我们
将在DIC患者的IPSC衍生细胞中概括带有3D工程心脏组织的EC-CM串扰
(EHTS)。在AIM 2中:我们将使用单次使用DOX处理的EHT中EC-CM串扰的机理
细胞进近(SCRNA-SEQ和SCATAC-SEQ)。在AIM 3中:我们将验证EC-CM的关键监管参与者
在DIC动物模型中串扰。我们的建议得到了通过从多个多数数据中引人入胜的初步数据的支持
调查人员的纪律团队。我们认为,我们在五个之内实现项目目标的好处
年。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nazish Sayed其他文献
Nazish Sayed的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nazish Sayed', 18)}}的其他基金
Unraveling the role of endothelium in chemotherapy-induced cardiotoxicity
揭示内皮在化疗引起的心脏毒性中的作用
- 批准号:
10543095 - 财政年份:2022
- 资助金额:
$ 39.35万 - 项目类别:
Deciphering the Endothelial Cell-Cardiomyocyte Crosstalk in LMNA Cardiomyopathy
破译 LMNA 心肌病中的内皮细胞-心肌细胞串扰
- 批准号:
10276748 - 财政年份:2021
- 资助金额:
$ 39.35万 - 项目类别:
Deciphering the Endothelial Cell-Cardiomyocyte Crosstalk in LMNA Cardiomyopathy
破译 LMNA 心肌病中的内皮细胞-心肌细胞串扰
- 批准号:
10688257 - 财政年份:2021
- 资助金额:
$ 39.35万 - 项目类别:
Deciphering the Endothelial Cell-Cardiomyocyte Crosstalk in LMNA Cardiomyopathy
破译 LMNA 心肌病中的内皮细胞-心肌细胞串扰
- 批准号:
10851040 - 财政年份:2021
- 资助金额:
$ 39.35万 - 项目类别:
Modeling Endothelial Dysfunction in LMNA-related Dilated Cardiomyopathy
LMNA 相关扩张型心肌病内皮功能障碍的建模
- 批准号:
10078868 - 财政年份:2017
- 资助金额:
$ 39.35万 - 项目类别:
相似国自然基金
阿魏酸基天然抗氧化抗炎纳米药物用于急性肾损伤诊疗一体化研究
- 批准号:82302281
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于hemin-MOFs的急性心肌梗塞标志物负背景光电化学-比色双模分析
- 批准号:22304039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
RNA甲基转移酶NSUN2介导SCD1 mRNA m5C修饰调控急性髓系白血病细胞铁死亡的机制研究
- 批准号:82300173
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于IRF5/MYD88信号通路调控巨噬细胞M1极化探讨针刀刺营治疗急性扁桃体炎的机制研究
- 批准号:82360957
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:地区科学基金项目
相似海外基金
Selective Radionuclide Delivery for Precise Bone Marrow Niche Alterations
选择性放射性核素输送以实现精确的骨髓生态位改变
- 批准号:
10727237 - 财政年份:2023
- 资助金额:
$ 39.35万 - 项目类别:
Understanding Chirality at Cell-Cell Junctions With Microscale Platforms
利用微型平台了解细胞与细胞连接处的手性
- 批准号:
10587627 - 财政年份:2023
- 资助金额:
$ 39.35万 - 项目类别:
Potential role of skin in SARS-CoV-2 infection
皮肤在 SARS-CoV-2 感染中的潜在作用
- 批准号:
10593622 - 财政年份:2023
- 资助金额:
$ 39.35万 - 项目类别:
Bridging the gap: joint modeling of single-cell 1D and 3D genomics
弥合差距:单细胞 1D 和 3D 基因组学联合建模
- 批准号:
10572539 - 财政年份:2023
- 资助金额:
$ 39.35万 - 项目类别:
Microglial process convergence following brain injury
脑损伤后小胶质细胞过程收敛
- 批准号:
10657968 - 财政年份:2023
- 资助金额:
$ 39.35万 - 项目类别: