Deciphering the Endothelial Cell-Cardiomyocyte Crosstalk in LMNA Cardiomyopathy
破译 LMNA 心肌病中的内皮细胞-心肌细胞串扰
基本信息
- 批准号:10276748
- 负责人:
- 金额:$ 39.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalATAC-seqAffectAnimal ModelAttentionBiomedical EngineeringCRISPR/Cas technologyCardiacCardiac MyocytesCardiomyopathiesCardiovascular PhysiologyCell CommunicationCell LineCellsChromatinCoculture TechniquesCollaborationsCommunicationComplexComputational BiologyDataDilated CardiomyopathyDiseaseEndothelial CellsEnvironmentFamilyFunctional disorderGene ExpressionGenesGenomic DNAGenotypeGoalsHeartHeart DiseasesHeart TransplantationHeart failureHumanImpairmentIn VitroIndividualKineticsKnowledgeLamin Type ALeadLigandsLovastatinMachine LearningMediatingModelingMolecularMorbidity - disease rateMutationNuclear EnvelopeOligonucleotidesOrganParacrine CommunicationPathogenesisPathogenicityPatientsPharmacologyPhenotypePositioning AttributeRegulator GenesResearch ProposalsSignal TransductionSiteTechnologyTissue EngineeringTranslational ResearchVariantWingWorkZebrafishbasecardiac tissue engineeringcell typeendothelial dysfunctionenv Gene Productsexperimental studyfamilial dilated cardiomyopathygenome editingheart functionimprovedin vivoinduced pluripotent stem cellinduced pluripotent stem cell technologyinsightinterdisciplinary approachknock-downlamin Closs of functionmechanical propertiesmortalitynext generation sequencingnovelparacrinepredictive modelingpromoterreceptorsingle cell technologysingle-cell RNA sequencingsoundstem cell biologytooltranscription factortranslational medicine
项目摘要
Project Summary/Abstract
Dilated cardiomyopathy (DCM) is a leading cause of heart failure and the leading reason for heart
transplantation. Major gaps exist in our understanding of the pathophysiology of DCM and mutations in the
gene that encodes the nuclear envelope proteins lamin A and C (LMNA) are considered to be the most
common cause of DCM. However, the molecular mechanisms that underlie “cardiolaminopathy” remain
elusive, and it is unknown why mutations in this ubiquitously expressed gene have such a disproportionate
effect on the heart. Using induced pluripotent stem cell (iPSCs)-derived endothelial cells (iPSC-ECs), we
recently studied a family affected by DCM due to a frameshift variant in LMNA, which showed endothelial
dysfunction (Sayed et al. Science Translational Medicine, 2020). This EC dysfunction could be reversed by
upregulating Krüppel-like Factor 2 (KLF2) by treatment of iPSC-ECs with a subset of statins, including
lovastatin. Importantly, this improvement in EC dysfunction had a positive effect on co-cultured iPSC-
cardiomyocytes (iPSC-CMs) from cardiolaminopathy patients, indicating an intricate crosstalk between the ECs
and CMs in LMNA cardiomyopathy.
Despite impressive progress, little attention has been given to the potential importance of cell-to-cell
signaling between ECs and CMs, despite the fact that ECs serve a paracrine function to enhance signaling in
CMs, especially in context to pharmacological stimulation. This knowledge gap impedes our comprehensive
understanding of organ dysfunction at a multi-cellular level. The overarching goal of our proposal is to use a
multidisciplinary approach that integrates human iPSCs, bioengineering tools, genome editing, and NGS to
gain novel insights into the pathogenesis of DCM. Using human iPSCs, we propose to decipher the impaired
cross-talk between ECs and CMs in LMNA cardiomyopathy and elucidate the beneficial class effects of statins
in improving the EC-CM signaling as a key factor in regulating cardiac function. We will pursue three specific
aims. In Aim 1: we will establish an experimental platform to study the genotype-phenotype association of
LMNA mutations on ECs and CMs. For this, we will recapitulate the EC-CM crosstalk in LMNA iPSC-derived
cells with 3D engineered heart tissues (EHTs). In Aim 2: we will decipher the mechanism of EC-CM crosstalk
in LMNA iPSC-derived EHTs using single-cell approaches (scRNA-seq and scATAC-seq). In Aim 3: we will
validate the key regulatory players of EC-CM crosstalk in LMNA cardiomyopathy by using CRISPR technology
and zebrafish animal model. We have provided compelling preliminary data to support the soundness of
our hypothesis-driven research proposal, and we are well positioned to achieve the project goals
within five years. If successful, our studies will provide a new paradigm for understanding the
pathogenesis and treatment of familial DCM.
项目摘要/摘要
扩张的心肌病(DCM)是心力衰竭的主要原因,也是心脏的主要原因
移植。我们对DCM的病理生理学和突变的理解存在主要差距
编码核包膜蛋白层层粘连蛋白A和C(LMNA)的基因被认为是最大的
DCM的常见原因。但是,“心脏疾病”基础的分子机制仍然存在
难以捉摸,尚不清楚为什么在这个普遍表达的基因中的突变如此不成比例
对心脏的影响。使用诱导的多能干细胞(IPSC)衍生的内皮细胞(IPSC-EC),我们
最近由于LMNA中的移码变体而研究了一个受DCM影响的家庭,该家庭显示了内皮
功能障碍(Sayed等人,科学转化医学,2020年)。这种EC功能障碍可能会被
通过以汀类药物为包括的IPSC-EC来上调Krüppel样因子2(KLF2),包括他汀类药物
lovastatin。重要的是,EC功能障碍的这种改善对共培养的IPSC-有积极影响
心脏瘤患者的心肌细胞(IPSC-CMS),表明ECS之间存在复杂的串扰
和LMNA心肌病中的CMS。
尽管进步令人印象深刻,但很少关注细胞到细胞的潜在重要性
ECS和CMS之间的信号传导,DOS EC具有旁分泌功能以增强信号传导的事实
CM,尤其是在药物刺激的背景下。这种知识差距阻碍了我们的全面
在多细胞水平上了解器官功能障碍。我们建议的总体目标是使用
多学科的方法将人类IPSC,生物工程工具,基因组编辑和NGS整合到
对DCM的发病机理获得新的见解。使用人IPSC,我们建议破译受损的
LMNA心肌病中的EC和CMS之间的串扰,并阐明了他汀类药物的有益类作用
在改善EC-CM信号作为控制心脏功能的关键因素时。我们将追求三个特定的
目标。在AIM 1中:我们将建立一个实验平台来研究
EC和CMS上的LMNA突变。为此,我们将概括以LMNA IPSC衍生的EC-CM串扰
具有3D工程心组织(EHT)的细胞。在AIM 2中:我们将破译EC-CM串扰的机制
在LMNA IPSC衍生的EHT中,使用单细胞方法(SCRNA-SEQ和SCATAC-SEQ)。在目标3:我们将
通过使用CRISPR技术来验证LMNA心肌病中EC-CM串扰的关键监管参与者
和斑马鱼动物模型。我们提供了引人入胜的初步数据,以支持
我们的假设驱动的研究建议,我们在实现项目目标方面处于良好状态
五年之内。如果成功,我们的研究将为理解
家族DCM的发病机理和治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nazish Sayed其他文献
Nazish Sayed的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nazish Sayed', 18)}}的其他基金
Unraveling the role of endothelium in chemotherapy-induced cardiotoxicity
揭示内皮在化疗引起的心脏毒性中的作用
- 批准号:
10340657 - 财政年份:2022
- 资助金额:
$ 39.35万 - 项目类别:
Unraveling the role of endothelium in chemotherapy-induced cardiotoxicity
揭示内皮在化疗引起的心脏毒性中的作用
- 批准号:
10543095 - 财政年份:2022
- 资助金额:
$ 39.35万 - 项目类别:
Deciphering the Endothelial Cell-Cardiomyocyte Crosstalk in LMNA Cardiomyopathy
破译 LMNA 心肌病中的内皮细胞-心肌细胞串扰
- 批准号:
10688257 - 财政年份:2021
- 资助金额:
$ 39.35万 - 项目类别:
Deciphering the Endothelial Cell-Cardiomyocyte Crosstalk in LMNA Cardiomyopathy
破译 LMNA 心肌病中的内皮细胞-心肌细胞串扰
- 批准号:
10851040 - 财政年份:2021
- 资助金额:
$ 39.35万 - 项目类别:
Modeling Endothelial Dysfunction in LMNA-related Dilated Cardiomyopathy
LMNA 相关扩张型心肌病内皮功能障碍的建模
- 批准号:
10078868 - 财政年份:2017
- 资助金额:
$ 39.35万 - 项目类别:
相似国自然基金
面向图神经网络ATAC-seq模体识别的最小间隔单细胞聚类研究
- 批准号:62302218
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于ATAC-seq策略挖掘穿心莲基因组中调控穿心莲内酯合成的增强子
- 批准号:82260745
- 批准年份:2022
- 资助金额:33.00 万元
- 项目类别:地区科学基金项目
基于ATAC-seq策略挖掘穿心莲基因组中调控穿心莲内酯合成的增强子
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于单细胞ATAC-seq技术的C4光合调控分子机制研究
- 批准号:32100438
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
基于单细胞ATAC-seq技术的C4光合调控分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Project 2: Impact of H1/H2 haplotypes on cellular disease-associated phenotypes driven by FTD-causing MAPT mutations
项目 2:H1/H2 单倍型对 FTD 引起的 MAPT 突变驱动的细胞疾病相关表型的影响
- 批准号:
10834336 - 财政年份:2023
- 资助金额:
$ 39.35万 - 项目类别:
Engineering 3D Osteosarcoma Models to Elucidate Biology and Inform Drug Discovery
工程 3D 骨肉瘤模型以阐明生物学并为药物发现提供信息
- 批准号:
10564801 - 财政年份:2023
- 资助金额:
$ 39.35万 - 项目类别:
Multi-modal profiling of spatially resolved cell types mediating opioid withdrawal
介导阿片类药物戒断的空间分辨细胞类型的多模式分析
- 批准号:
10787010 - 财政年份:2023
- 资助金额:
$ 39.35万 - 项目类别: