Modeling SNARE-Mediated Membrane Fusion
SNARE 介导的膜融合建模
基本信息
- 批准号:10445738
- 负责人:
- 金额:$ 33.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:Action PotentialsBeta CellBiochemicalCatalogsCell fusionCell membraneCellsChromaffin CellsClosure by clampCommunitiesComplexComputer ModelsCore ProteinCoupledDataDense Core VesicleDockingDynaminEntropyEventEvoked PotentialsEvolutionExocytosisFamilyFunctional disorderFundingGoalsGrainGrowthHormonesHot SpotImpairmentInformal Social ControlKineticsLaboratoriesMachine LearningMeasurementMechanicsMediatingMembraneMembrane FusionMembrane LipidsModelingMolecularMutateMutationNeuraxisNeurodegenerative DisordersNeurodevelopmental DisorderNeuroendocrine CellNeuronsNeurotransmittersPathway interactionsPhysiologicalProbabilityProcessPropertyProteinsRegulation of ExocytosisReproducibilityResearchRespiratory DiaphragmRestRunningS-nitro-N-acetylpenicillamineSNAP receptorSchemeSecretory VesiclesShapesSignal TransductionSiteStimulusStructureStudy modelsSynapsesSynaptic CleftSynaptic VesiclesTestingThinnessType 2 diabeticVesicleexperimental studyfoothydrophilicityin silicoinsulin secretionmathematical modelmembrane modelmillisecondmolecular dynamicsmulti-scale modelingnanodiskneurotransmissionneurotransmitter releasenovelpredictive modelingreconstitutionresponsesensorsimulationsynaptotagminsynaptotagmin Isynaptotagmin IIsyntaxintarget SNARE proteinsvesicular SNARE proteinsvesicular release
项目摘要
PROJECT SUMMARY
Many basic processes rely on secretion of bioactive molecules by exocytosis, when membrane-enclosed
vesicles containing neurotransmitters (NTs), hormones or other molecules fuse with the plasma membrane (PM)
and release their contents through fusion pores. Neurotransmission relies on NT release at neuronal synapses,
when a multicomponent machinery senses Ca!"influx triggered by an action potential and fuses small synaptic
vesicles with the plasma membrane on sub-millisecond timescales, releasing NTs into the synaptic cleft to elicit
a post-synaptic response. Other regulated exocytosis is slower, such as hormone release from neuroendocrine
cells when a stimulus provokes large dense core vesicles to release contents after seconds or longer.
In all cases, the membrane fusion step is accomplished by the SNARE proteins, when vesicle-associated VAMP
(the v-SNARE) and two PM-associated t-SNAREs syntaxin and SNAP 25 zipper into a ternary complex, pulling
the membranes together and fusing them. However, the mechanism of membrane fusion remains unclear. Other
components in the machinery block (“clamp”) SNARE-mediated fusion, until the Ca!"signal releases the clamp.
Synaptotagmin (Syt) is the Ca!"sensor for synchronous release, but the molecular identity of the clamp and the
Ca!"-triggered unclamping mechanism are not established. Mutations in SNARE proteins and other NT release
machinery components are associated with neurodevelopmental and neurodegenerative disorders, and
impaired fusion pore dilation is associated with reduced insulin secretion by β-cells of type-2 diabetics.
The proposed research aims to use mathematical modeling to establish the mechanisms of regulated membrane
fusion and the mechanisms that regulate the vesicle and its pore for controlled contents release following fusion.
From the previous funding period, we have working molecular dynamics (MD) simulations of SNARE-mediated
membrane fusion and of the NT release machinery incorporating the core SNARE and Syt components. The
simulations used sufficiently coarse-grained (CG) representations to achieve the computationally demanding
millisecond physiological timescales of fusion and release. Aim 1 is to advance the SNARE-mediated fusion
simulations with more realistic SNAREs, and to use machine learning to catalogue the pathways to membrane
fusion as a function of the size of the fusing vesicles and other key variables. Mutated SNAREs will be simulated
and compared to experiments by collaborators. Aim 2 is to use continuum mathematical modeling to establish
the structure, energetics and evolution of the fused vesicle-PM complex and its fusion pore, and the mechanisms
of SNARE- and Syt-mediated pore dilation. Aim 3 is to advance the MD simulations of the NT release machinery
by introducing molecularly explicit representation of the membranes, and by incorporating additional components
as their interactions become experimentally characterized, toward a long-term goal of “reconstituting” the
machinery in silico. Simulations will test hypothesized Ca!"-triggered unclamping schemes, and will be run with
mutations in the SNARE and Syt components that will be implemented experimentally by our collaborators.
项目摘要
许多基本过程依赖于胞吞作用的生物活性分子的分泌,当膜粘附时
含有神经递质(NTS),激素或其他分子与质膜(PM)融合的囊泡
并通过融合孔释放其内容。
当多组分机械感应CA时!
带有质膜的速率在子毫秒时期,将NTS释放到突触裂缝中以引起
突触后的重新统治。
当astimulus引起大型密集的核囊泡时,细胞在几秒钟或更长时间后释放含量。
在所有情况下,当囊泡相关的鞋面时,膜融合步骤都是由圈蛋白完成的
(V-SNARE)和两个与PM相关的T-SNARES语法素,然后将25拉链捕入三元络合物
膜融合在一起,但是,膜融合的机理尚不清楚。
机械块中的组件(“夹具”)圈养介导的融合,直到CA!”信号释放出来。
Synaptotagmin(SYT)是CA!
CA !!”未建立触发的解开机制。
机械组件与神经发育和神经退行性疾病,且d和d
受损的融合孔扩张与2型糖尿病患者的β细胞减少有关。
拟议的研究旨在使用数学建模来建立常规膜的机制
融合及其在融合后的孔孔及其孔孔前的孔孔前的孔孔的原理。
从上一个资金期开始,我们进行了工作分子动力学(MD)模拟
膜融合和NT释放机械融合了核心网罗和SYT组件
模拟使用了足够粗糙的(CG)代表来实现计算要求
融合和释放的毫秒生理时间尺度。
模拟使用更逼真的弹头,并使用机器学习来对通往膜的途径进行分类
融合是大惊小怪的囊泡和oter键变量的函数。
与合作者的实验相比,AIM 2是使用连续数学建模
融合囊泡-PM复合物的结构,能量和演变,是融合孔,机理
SNARE和SYT介导的孔隙扩张。
通过引入分子明确表示膜,并结合其他组件
随着它们的相互作用的特征,朝着“重新构成”的长期目标
模拟中的机械将测试假设的CA!
我们的合作者将实施的工资和SYT组件中的突变。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ben O'Shaughnessy其他文献
Ben O'Shaughnessy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ben O'Shaughnessy', 18)}}的其他基金
Modeling Contractile Ring Constriction in Fission Yeast
裂殖酵母的收缩环收缩建模
- 批准号:
8269820 - 财政年份:2010
- 资助金额:
$ 33.89万 - 项目类别:
Modeling Contractile Ring Constriction in Fission Yeast
裂殖酵母的收缩环收缩建模
- 批准号:
9106620 - 财政年份:2010
- 资助金额:
$ 33.89万 - 项目类别:
Modeling Contractile Ring Constriction in Fission Yeast
裂殖酵母的收缩环收缩建模
- 批准号:
8463560 - 财政年份:2010
- 资助金额:
$ 33.89万 - 项目类别:
Modeling Contractile Ring Constriction in Fission Yeast
裂殖酵母的收缩环收缩建模
- 批准号:
7889579 - 财政年份:2010
- 资助金额:
$ 33.89万 - 项目类别:
Modeling Contractile Ring Constriction in Fission Yeast
裂殖酵母的收缩环收缩建模
- 批准号:
8658104 - 财政年份:2010
- 资助金额:
$ 33.89万 - 项目类别:
Modeling Contractile Ring Constriction in Fission Yeast
裂殖酵母的收缩环收缩建模
- 批准号:
8061671 - 财政年份:2010
- 资助金额:
$ 33.89万 - 项目类别:
相似国自然基金
hhex调控vpp1阳性爪蛙腹胰前体细胞发育的分子机制的研究
- 批准号:31271554
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
相似海外基金
Structural Basis of Nociceptor Channel TRPM3 gating and pharmacology
伤害感受器通道 TRPM3 门控和药理学的结构基础
- 批准号:
10735377 - 财政年份:2023
- 资助金额:
$ 33.89万 - 项目类别:
High Throughput Methods for Single Cell Proteomics
单细胞蛋白质组学的高通量方法
- 批准号:
10609071 - 财政年份:2022
- 资助金额:
$ 33.89万 - 项目类别:
The Role of End-Binding Protein 2 and Microtubule Network in Inherited Cardiac Arrhythmias
末端结合蛋白 2 和微管网络在遗传性心律失常中的作用
- 批准号:
10351800 - 财政年份:2022
- 资助金额:
$ 33.89万 - 项目类别:
The Role of End-Binding Protein 2 and Microtubule Network in Inherited Cardiac Arrhythmias
末端结合蛋白 2 和微管网络在遗传性心律失常中的作用
- 批准号:
10580832 - 财政年份:2022
- 资助金额:
$ 33.89万 - 项目类别:
High Throughput Methods for Single Cell Proteomics
单细胞蛋白质组学的高通量方法
- 批准号:
10433158 - 财政年份:2022
- 资助金额:
$ 33.89万 - 项目类别: