Modeling Contractile Ring Constriction in Fission Yeast
裂殖酵母的收缩环收缩建模
基本信息
- 批准号:7889579
- 负责人:
- 金额:$ 30.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-05-01 至 2015-04-30
- 项目状态:已结题
- 来源:
- 关键词:AblationActininActinsActomyosinAddressAdoptedAnimal ModelAnimalsCell CycleCell Cycle StageCell WallCell divisionCellsCellular StressCollaborationsComplicationComputer SimulationCongenital AbnormalityContractile SystemCouplingCytokinesisCytoplasmDefectDepositionDiseaseElectronsEventExcisionFeedbackFigs - dietaryFission YeastGenerationsGerbilsGoalsGrowthKineticsLasersLearningLeftLifeLinkMalignant NeoplasmsMammalian CellMeasuresMembraneMicrofilamentsModelingMolecularMothersMotorMuscleMyofibrilsMyosin ATPaseOutcomePathologyPhaseProcessPropertyProteinsProtoplastsQuantitative MicroscopyRelaxationResearchResearch Project GrantsShapesSlideStaining methodStainsStressStress FibersStructureSwellingSystemTestingTranslatingWorkWound HealingYeastsbasecofilinconstrictiondaughter celldepolymerizationfibromafungushydroxy-aluminum polymermathematical modelnervous system disorderpolymerizationprogramspublic health relevanceresearch studytheoriestherapy developmenttime use
项目摘要
DESCRIPTION (provided by applicant): Cytokinesis is the process ending the cell cycle in which the mother cell cytoplasm divides into two. As a critical step in cell division it is fundamentally important to life and defects in the process are associated with cancer, neurological disease and birth defects. Animals and fungi accomplish cytokinesis by constriction of an actomyosin contractile ring built from force-producing myosin motor proteins, actin filaments and other com- ponents. While much is established about the molecular parts it remains much less clear how these parts coordinate to produce a functional contractile machine. This has been difficult because experimentally mea- suring how the parts are spatiotemporally organized is challenging and mathematical modeling is needed to translate hypothesized arrangements into key observables such as ring constriction rate. This research project is a program of mathematical modeling and computational simulation focusing on fission yeast as a model sys- tem to establish principles of cytokinesis which may be general since many proteins involved are conserved between yeast and animals. The modeling will proceed as part of a tight theory-experiment collaboration with an experimental colleague studying yeast cytokinesis. A 3-phase strategy of increasing complexity will be adopted, starting with a simpler contractile system and ending with the full complexity of yeast constriction which occurs concomitantly with septation, the deposition of cell wall material between daughter cells. Phase A will consist in a study of stationary mammalian cell stress fibers, contractile actomyosin structures important in wound healing and other contexts. Stress fibers are relatively well characterized and their kinetics have been directly measured. Phase B will address yeast protoplasts, cells lacking cell wall in which ring constric- tion can occur without the complication of septation. In phase C constriction-septation in wild type yeast will be studied. The long term goals are to establish mechanisms of contractile force generation and kinetics in stress fibers and the fission yeast contractile ring and to determine the commonality between these systems. The specific aims of the modeling are: (i) To test hypothetical arrangements and turnover rules of actin, myosin, actin nucleators/depolymerization agents and other key components. In particular, to determine whether ar- rangements are sarcomeric (periodic, muscle-like) or non-sarcomeric (random) in the ring and stress fibers. (ii) To test the hypothesis that actin turnover is regulated by internal stresses. (iii) To apply models to predict outcomes of laser ablation experiments and spontaneous severing events which can reveal otherwise hidden features of actomyosin structures. Laser ablation experiments have already been performed on stress fibers. (iv) To test the hypothesis that the ring regulates septum growth in wild type yeast constriction. These aims will be accomplished by modeling efforts in a continuous dialog with experiments aiming to reveal new structural and kinetic features of the cytokinetic contractile ring.
PUBLIC HEALTH RELEVANCE: Cytokinesis is the partitioning of a cell into two daughter cells at the end of the cell cycle. Its malfunction is associated with cancer, neurological disease and birth defects. The project aims to advance understanding of cytokinesis in yeast and cytokinesis mechanisms in general which will aid development of therapies for cytokinesis-related pathologies.
描述(由申请人提供):细胞分裂是结束细胞周期的过程,其中母细胞的细胞质分裂成两部分。作为细胞分裂的关键步骤,它对生命至关重要,该过程中的缺陷与癌症、神经系统疾病和出生缺陷有关。动物和真菌通过收缩由产生力的肌球蛋白运动蛋白、肌动蛋白丝和其他成分构成的肌动球蛋白收缩环来完成胞质分裂。尽管关于分子部件已经有了很多了解,但这些部件如何协调以产生功能性收缩机器仍不清楚。这很困难,因为通过实验测量零件的时空组织方式具有挑战性,并且需要数学建模将假设的排列转化为关键的可观察量,例如环收缩率。该研究项目是一个数学建模和计算模拟程序,重点关注裂殖酵母作为模型系统,以建立胞质分裂的原理,该原理可能是通用的,因为涉及的许多蛋白质在酵母和动物之间是保守的。该模型将作为与研究酵母胞质分裂的实验同事紧密的理论实验合作的一部分进行。将采用增加复杂性的三阶段策略,从更简单的收缩系统开始,到酵母收缩的完全复杂性结束,这种收缩与分隔(子细胞之间细胞壁材料的沉积)同时发生。 A 阶段将包括对静止哺乳动物细胞应力纤维、在伤口愈合和其他情况下重要的收缩肌动球蛋白结构的研究。应力纤维的特征相对较好,并且其动力学已被直接测量。 B 期将针对酵母原生质体,即缺乏细胞壁的细胞,其中可以发生环收缩,而不会出现分隔的并发症。在C阶段,将研究野生型酵母中的收缩分隔。长期目标是建立应力纤维和裂殖酵母收缩环中收缩力产生和动力学的机制,并确定这些系统之间的共性。建模的具体目标是:(i)测试肌动蛋白、肌球蛋白、肌动蛋白成核剂/解聚剂和其他关键成分的假设排列和周转规则。特别是,确定环和应力纤维中的排列是肌节(周期性、肌肉样)还是非肌节(随机)。 (ii) 检验肌动蛋白周转受内应力调节的假设。 (iii)应用模型来预测激光消融实验和自发切断事件的结果,这可以揭示肌动球蛋白结构的其他隐藏特征。激光烧蚀实验已经在应力纤维上进行。 (iv) 检验环调节野生型酵母收缩中隔膜生长的假设。这些目标将通过与旨在揭示细胞因子收缩环的新结构和动力学特征的实验进行连续对话的建模工作来实现。
公共卫生相关性:细胞分裂是细胞在细胞周期结束时分裂成两个子细胞。它的功能障碍与癌症、神经系统疾病和出生缺陷有关。该项目旨在增进对酵母胞质分裂和一般胞质分裂机制的了解,这将有助于开发胞质分裂相关病理学的疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ben O'Shaughnessy其他文献
Ben O'Shaughnessy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ben O'Shaughnessy', 18)}}的其他基金
Modeling Contractile Ring Constriction in Fission Yeast
裂殖酵母的收缩环收缩建模
- 批准号:
8269820 - 财政年份:2010
- 资助金额:
$ 30.28万 - 项目类别:
Modeling Contractile Ring Constriction in Fission Yeast
裂殖酵母的收缩环收缩建模
- 批准号:
9106620 - 财政年份:2010
- 资助金额:
$ 30.28万 - 项目类别:
Modeling Contractile Ring Constriction in Fission Yeast
裂殖酵母的收缩环收缩建模
- 批准号:
8463560 - 财政年份:2010
- 资助金额:
$ 30.28万 - 项目类别:
Modeling Contractile Ring Constriction in Fission Yeast
裂殖酵母的收缩环收缩建模
- 批准号:
8658104 - 财政年份:2010
- 资助金额:
$ 30.28万 - 项目类别:
Modeling Contractile Ring Constriction in Fission Yeast
裂殖酵母的收缩环收缩建模
- 批准号:
8061671 - 财政年份:2010
- 资助金额:
$ 30.28万 - 项目类别:
相似国自然基金
肌动蛋白成核促进因子SHRC的结构和分子机制的研究
- 批准号:32301034
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
染色质重塑因子肌动蛋白样6A在视网膜变性中的作用机制及干预研究
- 批准号:82371081
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
肌动蛋白结合蛋白Xirp2介导基质刚度诱导心肌细胞肥大的力学生物学机制
- 批准号:12372314
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
肌动蛋白结合蛋白ANLN在胆汁淤积性肝损伤后肝再生过程中的作用及机制研究
- 批准号:82370648
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
WDR1介导的肌动蛋白解聚动态平衡在小脑浦肯野细胞衰老性焦亡中的作用研究
- 批准号:32371053
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Sarcomeric Regulation of Signal Transduction and Cardiomyopathy
信号转导和心肌病的肌节调节
- 批准号:
9976127 - 财政年份:2020
- 资助金额:
$ 30.28万 - 项目类别:
Talin1 Function in Cardiac Myofibroblasts
Talin1 在心肌成纤维细胞中的功能
- 批准号:
10310438 - 财政年份:2019
- 资助金额:
$ 30.28万 - 项目类别:
Modeling Contractile Ring Constriction in Fission Yeast
裂殖酵母的收缩环收缩建模
- 批准号:
8269820 - 财政年份:2010
- 资助金额:
$ 30.28万 - 项目类别:
Modeling Contractile Ring Constriction in Fission Yeast
裂殖酵母的收缩环收缩建模
- 批准号:
8463560 - 财政年份:2010
- 资助金额:
$ 30.28万 - 项目类别: