The Role of End-Binding Protein 2 and Microtubule Network in Inherited Cardiac Arrhythmias
末端结合蛋白 2 和微管网络在遗传性心律失常中的作用
基本信息
- 批准号:10580832
- 负责人:
- 金额:$ 16.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:APC geneAction PotentialsAcuteAdaptor Signaling ProteinAdultAntisense OligonucleotidesArrhythmiaAttentionBindingBinding ProteinsBiochemicalBioinformaticsBrugada syndromeCRISPR/Cas technologyCardiacCardiac Electrophysiologic TechniquesCardiac MyocytesCardiovascular systemCell SizeCellsChemicalsCollaborationsCytoskeletonDangerousnessDataDefectDevelopmental GeneDiseaseElectrocardiogramElectron MicroscopyEmbryoFamily memberFishesFunctional disorderGenesGeneticGenetic ModelsGenetic studyGoalsHeartHeterozygoteHumanImmunoprecipitationInheritedIon ChannelKnock-outLinkManuscriptsMass Spectrum AnalysisMechanicsMicrotubulesMolecularMuscle CellsMutateN-terminalNaturePathogenesisPathway interactionsPatientsPhasePhenotypePhysiologyPlus End of the MicrotubulePredispositionPromoter RegionsProteinsReportingResearchRoleShapesSignal TransductionSodium ChannelSyndromeTestingTherapeuticTranscription RepressorVariantVentricularWNT Signaling PathwayZebrafisharrhythmogenic cardiomyopathybeta catenincell motilitydesigndrug discoverygene discoverygene interactiongenome wide association studygenomic locusglycogen synthase kinase 3 betaglycogen synthase kinase 3 beta inhibitorheart functionin vivoloss of functionmutantnovelnovel therapeuticsoverexpressionpharmacologicskillssudden cardiac deathtooltraffickingtranscriptome sequencing
项目摘要
PROJECT SUMMARY / ABSTRACT
Inherited cardiac arrhythmias are a significant and devastating cause of sudden cardiac death (SCD) both in the
US and globally. One prominent example is Brugada syndrome (BrS), which is a significant cause of SCD in
young patients, typically with structurally normal hearts. The first BrS-associated gene, SCN5A, which encodes
the cardiac sodium channel NaV1.5, was reported in 1998 and since then several other ion channel genes and
their interactors have been implicated. Despite these advances, only ~30% of BrS cases have a known variant
in one of these genes, leaving the remaining ~70% genetically undiagnosed. Recently, our collaboration
conducted the largest BrS genome-wide association study (GWAS) to date, which identified 9 novel genetic loci.
At one locus, MAPRE2, which encodes the microtubule plus end-binding protein 2 (EB2), emerged as one of the
top candidates based on bioinformatic analyses. My preliminary data using both a mapre2 null (KO) and N-
terminus truncated mutant (ΔN-EB2) support the role of MAPRE2 as a novel gene contributing to BrS.
Specifically, mapre2 loss-of-function leads to decreased NaV function both in the embryonic and adult ventricular
myocytes, a hallmark of BrS, as well as general sarcomeric disarray and microtubule network disorganization.
Furthermore, MAPRE2 may interact genetically with HEY2, a well-known cardiovascular developmental gene
which has been strongly implicated in BrS. Finally, RNA-sequencing implicates the Wnt pathway in mapre2 loss-
of-function and treatment with SB216763, a GSK3β inhibitor and activator of Wnt, rescues ECG abnormalities
in adult mapre2 mutant fish. These and other evidence led me to hypothesize that MAPRE2 loss-of-function
leads to trafficking and subcellular localization defects of NaV1.5 and associated proteins, and more generally
disrupts the microtubule network and cytoskeleton, contributing to cardiac arrhythmogenesis.
During the K99 phase, I will explore MAPRE2 as a novel gene contributing to BrS and define its
pathogenesis, paying special attention to its unique 43 aa N-terminus which is absent in the other family
members (EB1 and EB3). During the R00 phase, I will study HEY2’s gene-gene interaction with MAPRE2 and
SCN5A in the context of BrS and NaV1.5 dysfunction. I will also define more broadly the role of EB2 and
microtubule network in cardiac Wnt signaling and arrhythmogenesis including carrying out a phenotypic chemical
screen using zebrafish embryos based on in vivo Wnt/β-catenin activity, explore GSK3β inhibition as a novel
therapeutic avenue for BrS and related arrhythmias, and study genetic interaction between MAPRE2 with an
established arrhythmogenic cardiomyopathy mutant. Together, this proposal will allow me to fulfill my short-term
goal of gaining skills and expertise in cardiac genetics and zebrafish research, as well as build novel tools and
genetic models during the K99 phase. This will enable me to pursue my long-term objective during the R00
phase and beyond: to define a paradigm shift in our understanding of inherited cardiac arrhythmias and discover
novel therapeutics useful in treating BrS and related NaV arrhythmias.
项目概要/摘要
遗传性心律失常是心源性猝死 (SCD) 的一个重要且具有破坏性的原因,无论是在
在美国和全球范围内,一个突出的例子是布鲁格达综合征 (BrS),它是导致 SCD 的重要原因。
年轻患者,通常心脏结构正常 第一个 BrS 相关基因 SCN5A,它编码。
心脏钠通道 NaV1.5 于 1998 年被报道,此后还有其他几个离子通道基因和
尽管取得了这些进展,但只有约 30% 的 BrS 病例有已知的变异。
最近,我们的合作发现了其中一个基因的缺陷,剩下约 70% 的基因未被诊断出来。
进行了迄今为止最大规模的 BrS 全基因组关联研究 (GWAS),该研究确定了 9 个新的遗传位点。
在一个基因座上,编码微管加末端结合蛋白 2 (EB2) 的 MAPRE2 成为
基于生物信息学分析的最佳候选者。我使用 mapre2 null (KO) 和 N- 进行初步数据分析。
末端截短突变体 (ΔN-EB2) 支持 MAPRE2 作为促进 BrS 的新基因的作用。
具体来说,mapre2 功能丧失会导致胚胎和成人心室中 NaV 功能下降
肌细胞(BrS 的标志)以及一般肌节紊乱和微管网络紊乱。
此外,MAPRE2 可能与众所周知的心血管发育基因 HEY2 存在遗传相互作用
最后,RNA 测序表明 Wnt 通路与 mapre2 丢失有关。
功能丧失并用 SB216763(一种 GSK3β 抑制剂和 Wnt 激活剂)治疗可挽救心电图异常
这些和其他证据让我追查 MAPRE2 功能丧失的情况。
导致 NaV1.5 和相关蛋白的运输和亚细胞定位缺陷,更普遍的是
破坏微管网络和细胞骨架,导致心律失常。
在 K99 阶段,我将探索 MAPRE2 作为促进 BrS 的新基因,并定义其
发病机制,特别注意其独特的 43 个氨基酸 N 末端,这是其他家族中不存在的
在R00阶段,我将研究HEY2与MAPRE2和基因间的相互作用。
在 BrS 和 NaV1.5 功能障碍的背景下,我还将更广泛地定义 EB2 和 SCN5A 的作用。
心脏 Wnt 信号传导和心律失常发生中的微管网络,包括进行表型化学
基于体内 Wnt/β-catenin 活性筛选斑马鱼胚胎,探索 GSK3β 抑制作为一种新的
BrS 和相关心律失常的治疗途径,并研究 MAPRE2 与
共同确定了致心律失常性心肌病突变体,这个提案将使我能够实现我的短期目标。
目标是获得心脏遗传学和斑马鱼研究方面的技能和专业知识,以及构建新颖的工具和
K99 阶段的遗传模型这将使我能够在 R00 期间追求我的长期目标。
阶段及以后:定义我们对遗传性心律失常的理解的范式转变并发现
可用于治疗 BrS 和相关 NaV 心律失常的新疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Yi-Eng Chiang其他文献
David Yi-Eng Chiang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Yi-Eng Chiang', 18)}}的其他基金
The Role of End-Binding Protein 2 and Microtubule Network in Inherited Cardiac Arrhythmias
末端结合蛋白 2 和微管网络在遗传性心律失常中的作用
- 批准号:
10351800 - 财政年份:2022
- 资助金额:
$ 16.82万 - 项目类别:
相似国自然基金
神经系统中动作电位双稳传导研究
- 批准号:12375033
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
神经元离子通道-动作电位-量子化分泌关系研究
- 批准号:31930061
- 批准年份:2019
- 资助金额:303 万元
- 项目类别:重点项目
仿生味觉自适应柔性纳米电极阵列构建研究
- 批准号:61901469
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
晚钠电流通过CaMK-II调节跨壁胞内钙离子分布在心肌缺血再灌注心律失常中的作用及机制研究
- 批准号:81900300
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
3D Bioprinting of a Bioelectric Cell Bridge for Re-engineering Cardiac Conduction
用于重新设计心脏传导的生物电细胞桥的 3D 生物打印
- 批准号:
10753836 - 财政年份:2023
- 资助金额:
$ 16.82万 - 项目类别:
Antiarrhythmic mechanisms of chronic vagal nerve stimulation in sympathetic neurons
交感神经元慢性迷走神经刺激的抗心律失常机制
- 批准号:
10635151 - 财政年份:2023
- 资助金额:
$ 16.82万 - 项目类别:
Cellular and circuit function of Ndnf-expressing interneurons in a mouse model of a neurodevelopmental disorder
神经发育障碍小鼠模型中表达 Ndnf 的中间神经元的细胞和回路功能
- 批准号:
10678812 - 财政年份:2023
- 资助金额:
$ 16.82万 - 项目类别:
Gene Modulation of Acetylation Modifiers to Reveal Regulatory Links to Human Cardiac Electromechanics
乙酰化修饰剂的基因调节揭示与人类心脏机电的调节联系
- 批准号:
10677295 - 财政年份:2023
- 资助金额:
$ 16.82万 - 项目类别: