Elucidating Mechanisms for Rapid Vascularization by Modeling Vascular Islands in Early Embryogenesis
通过模拟早期胚胎发生中的血管岛来阐明快速血管化的机制
基本信息
- 批准号:10313257
- 负责人:
- 金额:$ 4.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Project Summary/Abstract
Mechanisms of capillary plexus formation have been well studied in avian, zebrafish, and mammalian embryos,
with the precise timing of these processes being found to have profound importance in the formation of an
efficient and robust vasculature. However, due to the limitations of in vivo developmental models, no results of
modifying initial conditions or temporally modifying the initiation of flow and the importance of increased viscosity
when blood cells enter circulation are unknown. Recent reports have leveraged the precise control available
within microfluidic in vitro devices to elucidate novel angiogenic mechanisms. The objective of this proposed
research is to determine how temporally modulating the shear stress, media viscosity, and increasing cortical
actin assembly through a non-canonical Notch pathway affect the transition of a nascent capillary bed into an
aligned quiescent vascular network, and determine the molecular cues that cause a transition from a stable
quiescent network to a highly dynamic phenotype. Experiments will be carried out in an in vitro dual-channel
microfluidic device to precisely control experimental conditions that are unavailable in in vivo models. The overall
hypothesis of this proposal is that changes in shear force and fluid viscosity initiated immediately after
formation of the primitive plexus, enable rapid and efficient vascular remodeling, which is stabilized by
a cortical reinforcing non-canonical Notch pathway. We will address this hypothesis and achieve the
proposed goals by first determining how precisely timed shear force, dynamic viscosity changes, and addition of
exogenous protein expression on nascent vasculature affects cortical reinforcement, network dynamics, and
morphology. Secondly, we will elucidate the main molecular and mechanotransduction mediated role of cortical-
Notch signaling in network adaptation to altered flow profiles. The ramifications of altered force applied to
vascular islands and a nascent vasculature and how it allows vascular network remodeling will be determined,
and ascertain whether inhibition of parts of the cortical-Notch pathway allows the network to revert from being
stably quiescent to highly dynamic and proliferative without compromising the overall expression of canonical-
Notch expression. More complete understanding of this process is of significant biological and clinical importance
as it will allow novel restorative therapies for highly prevalent and deadly vascular diseases such as Peripheral
Arterial Disease (PAD) and Ischemic Heart Disease (IHD).
项目摘要/摘要
毛细血管形成的机理在鸟类,斑马鱼和哺乳动物胚胎中已经进行了很好的研究,
由于这些过程的确切时机被发现在形成中具有极大的重视
有效而健壮的脉管系统。但是,由于体内发展模型的局限性,没有
修改初始条件或时间修改流量的启动以及粘度提高的重要性
当血细胞进入循环时,未知。最近的报告利用了可用的确切控制
在微流体内的体外装置中,以阐明新型的血管生成机制。该提议的目的
研究是为了确定如何调节剪切应力,培养基粘度和增加皮质
肌动蛋白通过非典型凹口途径会影响新生毛细管床的过渡
对齐静止的血管网络,并确定导致从稳定的过渡的分子提示
静态网络具有高度动态的表型。实验将在体外双通道中进行
微流体设备可以精确控制体内模型中无法使用的实验条件。总体
该提议的假设是,剪切力和流体粘度的变化立即开始
原始丛的形成,可以使快速有效的血管重塑,并稳定
皮质增强非经典凹口途径。我们将解决这一假设,并实现
通过首先确定精确定时的剪切力,动态粘度变化以及添加
外源性蛋白质在新生脉管系统上的表达会影响皮质增强,网络动力学和
形态学。其次,我们将阐明皮质的主要分子和机械转导介导的作用
网络适应更改流量轮廓的Notch信号传导。施用的改变的后果
血管岛和新生的脉管系统以及如何确定其允许血管网络重塑的方法
并确定抑制皮层途径的部分是否使网络恢复为
稳定地对高度动态和增殖,而不会损害规范的总体表达
缺口表达。对这一过程的更完整了解具有重要的生物学和临床重要性
因为它将允许新颖的恢复性疗法用于高度流行和致命的血管疾病,例如周围
动脉疾病(PAD)和缺血性心脏病(IHD)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Alex Lammers的其他基金
Elucidating Mechanisms for Rapid Vascularization by Modeling Vascular Islands in Early Embryogenesis
通过模拟早期胚胎发生中的血管岛来阐明快速血管化的机制
- 批准号:1068255610682556
- 财政年份:2021
- 资助金额:$ 4.85万$ 4.85万
- 项目类别:
相似海外基金
Engineered tissue arrays to streamline deimmunized DMD gene therapy vectors
工程组织阵列可简化去免疫 DMD 基因治疗载体
- 批准号:1072488210724882
- 财政年份:2023
- 资助金额:$ 4.85万$ 4.85万
- 项目类别:
HIV particle morphology and biogenesis
HIV颗粒形态和生物发生
- 批准号:1077274810772748
- 财政年份:2023
- 资助金额:$ 4.85万$ 4.85万
- 项目类别:
Understanding Chirality at Cell-Cell Junctions With Microscale Platforms
利用微型平台了解细胞与细胞连接处的手性
- 批准号:1058762710587627
- 财政年份:2023
- 资助金额:$ 4.85万$ 4.85万
- 项目类别:
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
- 批准号:1067716910677169
- 财政年份:2023
- 资助金额:$ 4.85万$ 4.85万
- 项目类别:
hiPSC Modeling of Restrictive Cardiomyopathy for Drug Testing
用于药物测试的限制性心肌病的 hiPSC 模型
- 批准号:1071639310716393
- 财政年份:2023
- 资助金额:$ 4.85万$ 4.85万
- 项目类别: