Bone Regeneration Induced by the Sustained Release of Osteoinductive microRNAs from 3D-printed Constructs
3D 打印结构中持续释放骨诱导性 microRNA 诱导骨再生
基本信息
- 批准号:10311132
- 负责人:
- 金额:$ 4.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-03 至 2023-07-02
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D PrintAdvanced DevelopmentAdverse effectsAllograftingArchitectureAutologous TransplantationBiocompatible MaterialsBiodegradationBiologicalBiological AssayBiologyBiomedical EngineeringBone DevelopmentBone Morphogenetic ProteinsBone RegenerationBone TransplantationCalvariaCell Differentiation processCell-Matrix JunctionCellsClinicClinicalClinical TreatmentComplexDataDefectDevelopmentDimensionsDoseEssential GenesExtracellular MatrixFDA approvedFamilyFellowshipGelatinGene ExpressionGoalsGrowthHybridsImplantIn VitroInfiltrationInvestigationMedicineMethodsMicroRNAsNuclearNutrientOrgan TransplantationOrthopedicsOsteogenesisPatientsPolymersPorosityPositioning AttributeProductionPropertyProteinsRattusResearchResearch TrainingSignal TransductionStainsStructureTechnologyTestingTimeTissue EngineeringTissuesTranscriptWorkbonebone marrow mesenchymal stem cellbone metabolismcaprolactonecell motilityclinical applicationclinical translationclinically relevantcrosslinkdensitydesignin vivoin vivo regenerationindividualized medicineinnovationinsightmembermigrationmultidisciplinarynew technologynovelosteogenicpreventregeneration potentialregenerativereplacement tissuerestorationscaffold
项目摘要
Project Summary/Abstract:
Large bone defects are clincially challenging to treat and often necessitate bone grafting. Natural grafting
options include autografts and allografts; however, these replacement tissues are limited in supply and difficult
to match to the dimensional irregularities of complex bone defects. The development of tissue-engineered (TE)
synthetic grafts has become essential to overcome the limitations of natural grafts; however, deficient scaffold
fabrication methods and inefficient osteoinductive agents have prevented the clinical translation of traditional
TE constructs. Therefore, the design of advanced synthetic grafts that overcome these limitations would
greatly impact the clinical treatment of large bone defects. The long-term goal of this proposed work is to
develop biodegradable, 3D-printed constructs with osteoconductive and inductive properties toward clinical use
for the treatment of patient-specific bone defects. The objective of this proposal aims to develop a TE construct
for bone regeneration using a hybrid materials approach that includes both synthetic and natural polymers in
the 3D-printed structure, combined with the sustained release of osteoinductive microRNAs. Advanced TE
constructs for this investigation will combine 3D-printable, FDA-approved polymers with tunable biodegradation
rates with natural polymer coatings to sustain the release of osteoinductive microRNAs. The central hypothesis
of this work is that the sustained release of osteoinductive microRNAs from polymer-coated 3D-printed
constructs will enhance the osteogenic capabilities of synthetic grafts by prolonging regenerative signaling to
maximize bone regeneration. To test this hypothesis, we will characterize microRNA release from polymer-
coated 3D-printed constructs (Aim 1), assess in vitro osteogenic differentiation induced by microRNA release
from polymer-coated constructs (Aim 2), and evaluate the bone regeneration potential of polymer-coated
microRNA-incorporated 3D-printed constructs (Aim 3). Collectively, these data with elucidate mechanisms in
which microRNA release from polymer-coated 3D-printed scaffolds can be optimized to sustain the release of
osteoinductive signals and maximize bone regeneration. These results will advance the development of
synthetic TE constructs to include both osteoconductive and inductive properties that will effectively promote
bone regeneration, and thus significantly impact the clinical treatment of challenging, patient-specific bone
defects.
项目摘要/摘要:
大骨缺损在治疗方面具有挑战性,通常需要骨移植。天然嫁接
选项包括自体移植和同种异体移植物;但是,这些替代组织的供应量有限,困难
与复杂骨缺损的维度不规则相匹配。组织工程(TE)的发展
合成移植物已成为克服天然移植物的局限性至关重要的。但是,脚手架不足
制造方法和效率低下的骨诱导剂阻止了传统的临床翻译
TE结构。因此,克服这些限制的高级合成移植物的设计将
极大地影响了大骨缺损的临床治疗。这项拟议工作的长期目标是
开发具有骨传导和感应特性的可生物降解的3D打印构建体
用于治疗患者特异性骨缺损。该提案的目的旨在开发一个结构
用于使用混合材料方法的骨再生,其中包括合成和天然聚合物
3D打印的结构,结合了骨诱导microRNA的持续释放。高级TE
该研究的构建体将结合3D打印的FDA批准聚合物与可调节的生物降解
天然聚合物涂层的速率维持骨诱导microRNA的释放。中心假设
这项工作是从聚合物涂层的3D打印中持续释放骨诱导的microRNA
构建体将通过延长再生信号传导来增强合成移植物的成骨功能
最大化骨骼再生。为了检验这一假设,我们将表征从聚合物中释放microRNA
涂层的3D打印构建体(AIM 1),评估MicroRNA诱导的体外成骨分化
从聚合物涂层的构建体(AIM 2),评估聚合物涂层的骨再生潜力
与MicroRNA合并的3D打印结构(AIM 3)。总的来说,这些数据具有阐明机制
可以优化从聚合物涂层的3D打印脚手架中释放的microRNA,以维持释放
骨诱导信号并最大化骨再生。这些结果将推动发展的发展
合成TE构建体以包括骨电导性和电感特性,这些特性将有效地促进
骨骼再生,从而显着影响具有挑战性的患者骨骼的临床治疗
缺陷。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew T Remy其他文献
Rat Calvarial Bone Regeneration by 3D-Printed Beta-Tricalcium Phosphate Incorporating MicroRNA-200c
通过 3D 打印结合 MicroRNA-200c 的 β-磷酸三钙实现大鼠颅骨再生
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Matthew T Remy;Adil Akkouch;Li He;S. Eliason;M. Sweat;Tadkamol Krongbaramee;F. Qian;B. Amendt;Xuan Song;L. Hong - 通讯作者:
L. Hong
Matthew T Remy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew T Remy', 18)}}的其他基金
Bone Regeneration Induced by the Sustained Release of Osteoinductive microRNAs from 3D-printed Constructs
3D 打印结构中持续释放骨诱导性 microRNA 诱导骨再生
- 批准号:
10487443 - 财政年份:2021
- 资助金额:
$ 4.14万 - 项目类别:
相似国自然基金
直书写3D打印应变传感器性能退化机制与耐久性设计方法
- 批准号:12372078
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
3D打印工厂社群建模及其客户化大批量群智生产机理与方法
- 批准号:52375512
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
全固态钠离子电池的3D打印制备及性能研究
- 批准号:52372090
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
构建生物3D打印类器官芯片模型研究弹性蛋白-整合素在胃癌免疫微环境中的作用
- 批准号:32371472
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
3D打印功能化仿生神经纤维修复脊髓损伤的作用及机制研究
- 批准号:82301560
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
New Hardware and Software Developments for Improving Prostate Metabolic MR Imaging
用于改善前列腺代谢 MR 成像的新硬件和软件开发
- 批准号:
10680043 - 财政年份:2023
- 资助金额:
$ 4.14万 - 项目类别:
Harnessing Continuous Liquid Interface 3D Printing to Improve Tumor-homing Stem Cell Therapy for Post-surgical Brain Cancer
利用连续液体界面 3D 打印改善脑癌术后肿瘤归巢干细胞疗法
- 批准号:
10552623 - 财政年份:2022
- 资助金额:
$ 4.14万 - 项目类别:
Harnessing Continuous Liquid Interface 3D Printing to Improve Tumor-homing Stem Cell Therapy for Post-surgical Brain Cancer
利用连续液体界面 3D 打印改善脑癌术后肿瘤归巢干细胞疗法
- 批准号:
10420701 - 财政年份:2022
- 资助金额:
$ 4.14万 - 项目类别:
Bone Regeneration Induced by the Sustained Release of Osteoinductive microRNAs from 3D-printed Constructs
3D 打印结构中持续释放骨诱导性 microRNA 诱导骨再生
- 批准号:
10487443 - 财政年份:2021
- 资助金额:
$ 4.14万 - 项目类别: