Harnessing Continuous Liquid Interface 3D Printing to Improve Tumor-homing Stem Cell Therapy for Post-surgical Brain Cancer
利用连续液体界面 3D 打印改善脑癌术后肿瘤归巢干细胞疗法
基本信息
- 批准号:10420701
- 负责人:
- 金额:$ 46.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D PrintAdvanced DevelopmentAllograftingAnimalsArchitectureBiological AssayBiophysicsBloodBrainCell SurvivalChemotherapy-Oncologic ProcedureClinicalClinical ResearchCoculture TechniquesComplexCustomDepositionEnzyme-Linked Immunosorbent AssayExcisionGelatinGenetic EngineeringGlioblastomaGrowthHomingHumanHuman EngineeringImageImmuneImmune systemImmunocompetentImplantIn VitroInjectionsKineticsLiquid substanceMalignant NeoplasmsMalignant neoplasm of brainMechanicsMethodsMicroscopicModelingModulusMusNeoplasm TransplantationOperative Surgical ProceduresPatientsPenetrationPerformancePharmaceutical PreparationsPostoperative PeriodPrimary Brain NeoplasmsPrintingProductionPropertyRecurrenceResidual TumorsResidual stateResolutionSafetySeedsShapesSolidStatistical Data InterpretationStem cell transplantSurgically-Created Resection CavityTNF-related apoptosis-inducing ligandTechnologyTestingTherapeuticTissuesTranslatingTransplantationVariantXenograft procedureanti-cancerbasebioluminescence imagingbiomaterial compatibilitybrain tissuecancer cellcancer invasivenesscancer stem cellcancer therapyclinically relevantcopolymerdesignfirst-in-humangene producthydrogel scaffoldimmunocytochemistryimprovedin vivomigrationmouse modelnerve stem cellnovelnovel therapeuticsporous hydrogelpreclinical studyrational designresponsescaffoldstem cell therapystem cellstumor
项目摘要
Project Summary/Abstract
Glioblastoma is the most common primary brain tumor and one of the deadliest forms of cancer. Recently, we
found that biocompatible matrices significantly improve the transplant of tumor-homing neural stem cells into
the post-surgical GBM cavity allowing them to deliver anti-cancer gene products that suppress tumor
recurrence. Yet, the optimal scaffold figuration that maximizes tNSC transplant, migration, drug release, and
subsequent GBM kill remain unknown. Using clinically relevant human tNSCs, matrices, and mouse models of
GBM resection/recurrence, we have found that 3D architecture and scaffold composition markedly enhance
tNSC persistence in the surgical cavity. Here in, we hypothesize that optimizing features through unique 3D
printing of custom designed scaffolds will achieve superior suppression of post-surgical GBMs by tNSC
therapy. Leveraging Continuous Liquid Interface Printing (CLIP), a novel continuous fabrication method with
high spatial resolution, we propose to fabricate a panel of 3D matrices with different architectural, biophysical,
and mechanical response features design rationally selected to improve tNSC therapy. We will define the
impact of each design feature on tNSC persistence, homing and killing in vitro and in vivo, then test a final
optimized matrix incorporating the most beneficial features into a single matrix using surgical resection models
of patient-derived human xenografts in immune-depleted mice and syngeneic GBM allografts in immune-
competent animals. We propose to undertake the following Aims: 1) Utilize CLIP to fabricate a panel of 3D
printed matrices with varied design features; 2) Define the impact of 3D design features on tNSC efficacy for
post-operative GBM; 3) Investigate the efficacy and safety of 3D matrix/tNSC therapy in immune-competent
models of GBM resection/recurrence. The results of our study will generate a therapeutic tNSC/scaffold
transplant strategy capable of robust GBM killing that can be translated for human patient testing. It will also
uncover the scaffold features that regulate different aspects of tNSCs, allowing us to modulate tNSC cancer
therapy through matrix design.
项目摘要/摘要
胶质母细胞瘤是最常见的原发性脑肿瘤,也是最致命的癌症之一。最近,我们
发现生物相容性矩阵显着改善了肿瘤神经干细胞的移植
手术后的GBM腔,使它们能够提供抑制肿瘤的抗癌基因产物
复发。然而,最大化TNSC移植,迁移,药物释放和
随后的GBM杀戮仍然未知。使用临床相关的人类TNSC,矩阵和小鼠模型
GBM切除/复发,我们发现3D体系结构和脚手架成分显着增强
TNSC在手术腔中的持久性。在这里,我们假设通过唯一的3D优化功能
定制设计的脚手架的印刷将获得TNSC对手术后GBMS的良好抑制
治疗。利用连续液体接口打印(夹),一种新型的连续制造方法
高空间分辨率,我们建议制造一组3D矩阵,具有不同的建筑,生物物理,
和机械响应特征在合理地选择了改善TNSC治疗的设计。我们将定义
每个设计功能对TNSC持久性,体外和体内杀死的影响,然后测试最终
优化的矩阵使用手术切除模型将最有益的特征纳入单个矩阵中
免疫缺乏的小鼠中的患者衍生的人异种移植物和免疫中的同种异体移植物
能干的动物。我们建议实现以下目的:1)使用夹子制造3D面板
具有各种设计功能的印刷矩阵; 2)定义3D设计功能对TNSC功效的影响
术后GBM; 3)研究3D矩阵/TNSC治疗对免疫能力的功效和安全性
GBM切除/复发的模型。我们的研究结果将产生治疗性TNSC/支架
能够进行强大的GBM杀戮的移植策略可以翻译以进行人体患者测试。它也会
发现调节TNSC不同方面的脚手架特征,使我们能够调节TNSC癌症
通过矩阵设计的治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shawn Hingtgen其他文献
Shawn Hingtgen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shawn Hingtgen', 18)}}的其他基金
Harnessing Continuous Liquid Interface 3D Printing to Improve Tumor-homing Stem Cell Therapy for Post-surgical Brain Cancer
利用连续液体界面 3D 打印改善脑癌术后肿瘤归巢干细胞疗法
- 批准号:
10552623 - 财政年份:2022
- 资助金额:
$ 46.72万 - 项目类别:
Engineering stem cell therapies to understand and overcome glioblastoma adaption
工程干细胞疗法以了解和克服胶质母细胞瘤适应
- 批准号:
9447282 - 财政年份:2017
- 资助金额:
$ 46.72万 - 项目类别:
Engineering stem cell therapies to understand and overcome glioblastoma adaption
工程干细胞疗法以了解和克服胶质母细胞瘤适应
- 批准号:
10218274 - 财政年份:2017
- 资助金额:
$ 46.72万 - 项目类别:
Engineering stem cell therapies to understand and overcome glioblastoma adaption
工程干细胞疗法以了解和克服胶质母细胞瘤适应
- 批准号:
9751410 - 财政年份:2017
- 资助金额:
$ 46.72万 - 项目类别:
Nanofiber matrices to improve neural stem cell-mediated cancer therapy
纳米纤维基质改善神经干细胞介导的癌症治疗
- 批准号:
9282732 - 财政年份:2016
- 资助金额:
$ 46.72万 - 项目类别:
Nanofiber matrices to improve neural stem cell-mediated cancer therapy
纳米纤维基质改善神经干细胞介导的癌症治疗
- 批准号:
9160211 - 财政年份:2016
- 资助金额:
$ 46.72万 - 项目类别:
相似国自然基金
面向3D打印平行机的精确调度算法与动态调整机制研究
- 批准号:72301196
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
适于3D打印的肌球蛋白微凝胶Pickering乳液富脂鱼糜的稳定机制
- 批准号:32360595
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于3D生物打印类器官模型探究PAK5调控三阴性乳腺癌铂类耐药的机制研究
- 批准号:82303979
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
构建生物3D打印类器官芯片模型研究弹性蛋白-整合素在胃癌免疫微环境中的作用
- 批准号:32371472
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
3D打印功能化仿生神经纤维修复脊髓损伤的作用及机制研究
- 批准号:82301560
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
New Hardware and Software Developments for Improving Prostate Metabolic MR Imaging
用于改善前列腺代谢 MR 成像的新硬件和软件开发
- 批准号:
10680043 - 财政年份:2023
- 资助金额:
$ 46.72万 - 项目类别:
Harnessing Continuous Liquid Interface 3D Printing to Improve Tumor-homing Stem Cell Therapy for Post-surgical Brain Cancer
利用连续液体界面 3D 打印改善脑癌术后肿瘤归巢干细胞疗法
- 批准号:
10552623 - 财政年份:2022
- 资助金额:
$ 46.72万 - 项目类别:
Bone Regeneration Induced by the Sustained Release of Osteoinductive microRNAs from 3D-printed Constructs
3D 打印结构中持续释放骨诱导性 microRNA 诱导骨再生
- 批准号:
10487443 - 财政年份:2021
- 资助金额:
$ 46.72万 - 项目类别:
Bone Regeneration Induced by the Sustained Release of Osteoinductive microRNAs from 3D-printed Constructs
3D 打印结构中持续释放骨诱导性 microRNA 诱导骨再生
- 批准号:
10311132 - 财政年份:2021
- 资助金额:
$ 46.72万 - 项目类别: