Frontocortical Signaling Signatures in Flexible Reinforcement Learning
灵活强化学习中的额皮质信号特征
基本信息
- 批准号:10304186
- 负责人:
- 金额:$ 23.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-11-17 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:Animal ModelAnimalsAnteriorAreaBehaviorBehavioralCalciumChronicCodeCouplingCuesCustomDevelopmentDiscriminationDiscrimination LearningElectrodesElectrophysiology (science)EnvironmentExploratory/Developmental GrantFailureFeedbackImageImpairmentLeadLearningLightMediatingModelingMonitorOutcomePalatePatternPerformancePhasePhotonsPredictive ValueProbabilityProcessPsychological reinforcementPsychopathologyRattusReversal LearningRewardsRoleSensorySignal TransductionSliceStimulusTestingTimeUncertaintyUpdateWorkadaptive learningbasebehavior changecingulate cortexdesigndesigner receptors exclusively activated by designer drugsexpectationexperienceexperimental studyflexibilityimprovedin vivoneuropsychiatric disorderneuropsychiatryneuroregulationnew technologynovelnovel strategiesrelating to nervous systemtime use
项目摘要
Various neuropsychiatric conditions lead to failures in generating accurate models of the reward environment or
inabilities in using those models to guide flexible behavior, very often manifesting as impaired reversal learning.
The anterior cingulate cortex (ACC) and the orbitofrontal cortex (OFC) are frontocortical regions important for
flexible reinforcement learning, and have been theorized to work in a hierarchy of parallel processes for reward-
based choice. In OFC, there is priority encoding of lower-level attributes like reward-predictive value of sensory
cues, the palatability of specific rewards, and the current stimulus-reward mappings relevant to behavior. In ACC,
these variables are thought to be multiplexed for higher-level computations of reward prediction error (RPE) and
confidence/uncertainty of predictions, which are used to monitor performance and update behavioral strategies
when necessary (particularly overall trial strategy following positive feedback, i.e., WinStay). These computations
may depend upon propagation of spikes from OFC to ACC. However, it remains poorly understood how flexible
reward learning is mediated by interactions between OFC and ACC. Here we will investigate this question
using a robust animal model of adaptive learning under uncertainty: stimulus-based probabilistic reversal
learning (PRL). In freely behaving rats, we will use a combination of in vivo 1-photon calcium imaging and
electrophysiology, chemogenetics, and closed-loop neural control of reward delivery to examine how OFC and
ACC regulate PRL. Using new technology that we have recently developed for online decoding of calcium activity
we will use a novel strategy of regulating reward delivery based upon neural activity in ACC and OFC to test
whether flexible reward learning depends upon accurate neural representations in these frontocortical areas. To
date, we have: demonstrated effective DREADDs manipulation in vivo and in transduced cortical slices; designed
and tested custom electrode arrays to perform chronic in vivo electrophysiological recordings in these areas
simultaneously; and imaged ensemble activity time-locked to behavior, which has proven stable over multiple
sessions, ideal to study learning. Leveraging these technical advances and using this capacity as a platform, we
propose to identify the precise cortico-cortical mechanisms of encoding variables in flexible reinforcement
learning across two Aims. Collectively, these experiments will: 1) shed new light on the signaling signatures of
cortical regions and their respective roles in flexible reinforcement learning, 2) accelerate groundbreaking
experiments as they would be performed in closed-loop: control of reversal learning in real-time using decoded
neural expectation, and 3) these signals would eventually be compared in animal models of psychopathology
because of their known failures in reversal learning. These novel and unconventional approaches make the
R21 mechanism ideal for the proposed work.
各种神经精神疾病导致未能产生准确的奖励环境模型或
使用这些模型来指导灵活行为,通常表现为逆转学习受损。
前扣带回皮质(ACC)和眶额皮层(OFC)对额叶区域很重要
灵活的强化学习,并已被理论化在平行过程的层次结构中工作,以奖励 -
基于选择。在OFC中,有优先编码较低级别的属性,例如奖励预测的感觉
提示,特定奖励的可容纳性以及与行为相关的当前刺激奖励映射。在ACC中,
这些变量被认为是多重的,以用于奖励预测误差(RPE)和
预测的信心/不确定性,用于监视性能和更新行为策略
必要时(尤其是遵循积极反馈的总体试验策略,即赢家)。这些计算
可能取决于OFC到ACC的峰值传播。但是,它仍然不太了解灵活多么灵活
奖励学习是由OFC和ACC之间的相互作用介导的。在这里我们将调查这个问题
在不确定性下使用健壮的自适应学习动物模型:基于刺激的概率逆转
学习(PRL)。在自由行为的大鼠中,我们将结合体内1-光子钙成像和
电生理学,化学遗传学和对奖励交付的闭环神经控制,以研究OFC和OFC的方式
ACC调节PRL。使用我们最近开发的新技术用于在线解码钙活动
我们将使用一种新的策略来调节基于ACC和OFC中神经活动的奖励交付进行测试
灵活的奖励学习是否取决于这些额叶区域中准确的神经表示。到
日期,我们有:在体内和转导的皮质切片中表现出有效的恐怖操作;设计
并测试了自定义电极阵列以在这些区域执行慢性体内电生理记录
同时地;并成像合奏活动时间锁定为行为,这已证明在多个上稳定
会议,理想的学习学习。利用这些技术进步并将这种能力作为平台,我们
建议识别柔性增强中编码变量的精确皮质皮质机制
跨两个目标学习。总的来说,这些实验将:1)对
皮质区域及其在柔性增强学习中的角色,2)加速开创性
实验将在闭环中进行:实时使用解码的逆转学习
神经期望和3)最终将在心理病理学动物模型中比较这些信号
由于他们在逆转学习方面已知的失败。这些新颖和非常规的方法使
R21机制非常适合拟议的工作。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HUGH T BLAIR其他文献
HUGH T BLAIR的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HUGH T BLAIR', 18)}}的其他基金
Hemispheric Lateralization of Emotional Memory Circuits in the Amygdala
杏仁核情绪记忆回路的半球偏侧化
- 批准号:
7255804 - 财政年份:2006
- 资助金额:
$ 23.4万 - 项目类别:
CRCNS: Path Intergration by the Grid Cell Network
CRCNS:网格单元网络的路径整合
- 批准号:
8841822 - 财政年份:2006
- 资助金额:
$ 23.4万 - 项目类别:
CRCNS: Path Integration by the Grid Cell Network
CRCNS:网格单元网络的路径集成
- 批准号:
7286366 - 财政年份:2006
- 资助金额:
$ 23.4万 - 项目类别:
Hemispheric Lateralization of Emotional Memory Circuits in the Amygdala
杏仁核情绪记忆回路的半球偏侧化
- 批准号:
7458854 - 财政年份:2006
- 资助金额:
$ 23.4万 - 项目类别:
CRCNS: Path Intergration by the Grid Cell Network
CRCNS:网格单元网络的路径整合
- 批准号:
8660321 - 财政年份:2006
- 资助金额:
$ 23.4万 - 项目类别:
CRCNS: Path Intergration by the Grid Cell Network
CRCNS:网格单元网络的路径整合
- 批准号:
8460139 - 财政年份:2006
- 资助金额:
$ 23.4万 - 项目类别:
Lateralization of Emotional Memory Circuits in Amygdala
杏仁核情绪记忆回路的偏侧化
- 批准号:
7094518 - 财政年份:2006
- 资助金额:
$ 23.4万 - 项目类别:
CRCNS: Path Intergration by the Grid Cell Network
CRCNS:网格单元网络的路径整合
- 批准号:
8196348 - 财政年份:2006
- 资助金额:
$ 23.4万 - 项目类别:
CRCNS: Path Intergration by the Grid Cell Network
CRCNS:网格单元网络的路径整合
- 批准号:
8306731 - 财政年份:2006
- 资助金额:
$ 23.4万 - 项目类别:
CRCNS: Path Integration by the Grid Cell Network
CRCNS:网格单元网络的路径集成
- 批准号:
7216448 - 财政年份:2006
- 资助金额:
$ 23.4万 - 项目类别:
相似国自然基金
组合诱导CiPSCs-NSC与DA神经元前体移植治疗帕金森病模型猪体内功能建立及调控机制研究
- 批准号:81771381
- 批准年份:2017
- 资助金额:54.0 万元
- 项目类别:面上项目
BACE2活性片段与细胞穿膜肽融合蛋白对APP剪切作用的研究
- 批准号:81600943
- 批准年份:2016
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
内嗅皮层GABA能神经元活动在精神分裂症样认知及感觉运动门控等功能障碍中的作用和机制
- 批准号:81671053
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
虹膜及睫状体上皮细胞在非感染性前葡萄膜炎发病中的作用
- 批准号:81570829
- 批准年份:2015
- 资助金额:51.0 万元
- 项目类别:面上项目
青藏高原矮生二裂叶委陵菜降糖活性成分及作用机制研究
- 批准号:81460652
- 批准年份:2014
- 资助金额:47.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Effects of tACS on alcohol-induced cognitive and neurochemical deficits
tACS 对酒精引起的认知和神经化学缺陷的影响
- 批准号:
10825849 - 财政年份:2024
- 资助金额:
$ 23.4万 - 项目类别:
Impact of tissue resident memory T cells on the neuro-immune pathophysiology of anterior eye disease
组织驻留记忆 T 细胞对前眼疾病神经免疫病理生理学的影响
- 批准号:
10556857 - 财政年份:2023
- 资助金额:
$ 23.4万 - 项目类别:
Low-Dose Magneto-Thrombolysis to Expand Stroke Care
低剂量磁溶栓扩大中风治疗范围
- 批准号:
10693650 - 财政年份:2023
- 资助金额:
$ 23.4万 - 项目类别:
The Underlying Mechanisms of Visual Impairment and Myopia in Prematurity
早产儿视力障碍和近视的潜在机制
- 批准号:
10584723 - 财政年份:2023
- 资助金额:
$ 23.4万 - 项目类别: