Novel computational techniques to detect the relationship between sitting patterns and metabolic syndrome in existing cohort studies.
在现有队列研究中检测坐姿模式与代谢综合征之间关系的新计算技术。
基本信息
- 批准号:10228732
- 负责人:
- 金额:$ 60.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerometerAcuteAdolescentAdultAgeAlgorithmsAmerican Heart AssociationBehaviorBlood GlucoseBlood PressureBody PatterningBody fatCalibrationCholesterolChronic DiseaseClassificationClinicalCohort StudiesComputational TechniqueDataData SetDevelopmentDevicesDiabetes MellitusElderlyEthnic OriginFrequenciesGenderGuidelinesHealthHealth behaviorHip region structureInterventionIntervention TrialLaboratoriesLongitudinal cohort studyMachine LearningMeasurementMeasuresMetabolicMetabolic syndromeMethodsNational Health and Nutrition Examination SurveyObesityOutcomePatternPhysical activityPopulation GroupPostureProcessRecommendationReportingResearch PersonnelRisk FactorsSamplingStrokeTechniquesTestingThigh structureTimeTrainingTriglyceridesUse of New TechniquesValidationVariantYouthage groupalgorithm trainingcohortepidemiology studyheart disease riskimprovedindexingmachine learning algorithmnovelolder womenperformance testsresponsescale upsedentaryyoung adult
项目摘要
Abstract
Metabolic syndrome is a cluster of conditions (increased blood pressure, high blood sugar, excess body fat
around the waist, and abnormal cholesterol or triglyceride levels) that occur together, increasing risk of heart
disease, stroke and diabetes. Epidemiological studies have shown that prolonged sitting is deleterious to
metabolic indicators, even after adjusting for physical activity (PA). Acute laboratory trials have shown that
breaking up sitting time can improve metabolic factors. Sitting is a prevalent behavior in all population groups
by age, gender and ethnicity. Associations with metabolic syndrome factors, such as obesity, have also been
shown in all population groups. Epidemiological studies have mostly depended on reported sitting time,
especially TV reviewing. More recently large cohort studies have collected data from hip worn accelerometers
and applied a cut point (e.g., 100 counts per minute) on single axis data to estimate sedentary time. Such
devices have been included in numerous studies, principally because of their accuracy to measure PA
intensity. Primarily used in intervention trials to reduce sitting, the thigh worn ActivPAL has been shown to
more accurately assess posture and provide valid measures of sitting, standing, and sit-stand transitions. To
date, very few health outcome cohort studies have included the ActivPAL. Compared to the ActivPAL and free
living observations of sitting time, the 100 count cut point has been shown to underestimate prolonged sitting
by substantially overestimating sit-stand transitions. New studies are showing that how we accumulate sitting
time (i.e. in long or short bouts) is associated with metabolic health outcomes, and may be independent of total
sitting time and PA. Study results on prolonged sitting and metabolic risk factors from accelerometer data are
inconsistent and may be due to measurement error in the cut points employed. In a small sample of older
women, adults, and youth we have demonstrated that novel machine learned methods can greatly improve
estimates of prolonged sitting and transitions. Further development and testing of these methods would
support valid applications to existing large cohort studies with raw accelerometer data to improve estimates of
associations between sitting patterns and metabolic health. There are also many large cohorts (e.g. NHANES
2003/6), with quality health outcomes, but non raw accelerometer count data, so calibration methods to adjust
non raw estimates of sitting time are also needed and would be attractive to researchers not yet familiar with
the machine learning process. We proposed to employ 7 existing data sets (N=20,000) matched for age and
spanning youth, adults and older adults. We will scale up our training and test the performance of the refined
algorithms to detect sit-stand frequencies, prolonged sitting, usual bout duration and Alpha (a combination of
duration & frequency). We will test performance of the algorithms against ActivPAL (ground truth) and in new
samples assess predictive validity with objective health outcomes. We will test differences between the existing
and new techniques using R2 and mean-squared error of prediction (via bootstrapping) and GEE techniques.
抽象的
代谢综合征是一系列病症(血压升高、高血糖、体内脂肪过多)
腰部周围的胆固醇或甘油三酯水平异常)同时发生,会增加心脏病的风险
疾病、中风和糖尿病。流行病学研究表明,久坐有害健康
代谢指标,即使在调整体力活动 (PA) 后也是如此。急性实验室试验表明
打破久坐的时间可以改善代谢因素。久坐是所有人群中普遍存在的行为
按年龄、性别和种族。与肥胖等代谢综合征因素的关联也已被证实
显示在所有人口群体中。流行病学研究主要依赖于报告的坐着时间,
尤其是电视评论。最近的大型队列研究收集了来自髋部佩戴的加速度计的数据
并对单轴数据应用切点(例如,每分钟 100 次计数)来估计久坐时间。这样的
设备已被纳入众多研究中,主要是因为它们测量 PA 的准确性
强度。大腿佩戴的 ActivPAL 主要用于减少久坐的干预试验,已被证明可以
更准确地评估姿势并提供坐、站和坐站转换的有效测量。到
迄今为止,很少有健康结果队列研究纳入 ActivPAL。与 ActivPAL 和免费相比
对坐着时间的实时观察,100 计数切点已被证明低估了长时间坐着的情况
通过大大高估坐站转换。新的研究表明我们如何积累久坐的习惯
时间(即长或短时间)与代谢健康结果相关,并且可能与总次数无关
坐时间和 PA。来自加速度计数据的久坐和代谢危险因素的研究结果是
不一致,可能是由于所采用的切割点的测量误差造成的。在较旧的小样本中
我们已经证明,新颖的机器学习方法可以极大地改善妇女、成人和青少年的生活质量
长时间坐着和转换的估计。这些方法的进一步开发和测试将
使用原始加速度计数据支持现有大型队列研究的有效应用,以改进对
坐姿模式与代谢健康之间的关联。还有许多大型队列(例如 NHANES
2003/6),具有高质量的健康结果,但非原始加速度计计数数据,因此校准方法需要调整
还需要对坐着时间的非原始估计,这对尚不熟悉的研究人员很有吸引力
机器学习过程。我们建议采用 7 个现有数据集(N=20,000),与年龄和年龄相匹配。
涵盖青少年、成人和老年人。我们将扩大培训规模并测试精炼后的性能
检测坐站频率、长时间坐着、通常的持续时间和 Alpha 的算法(
持续时间和频率)。我们将根据 ActivPAL(地面事实)和新的环境测试算法的性能
样本评估客观健康结果的预测有效性。我们将测试现有的差异
以及使用 R2 和预测均方误差(通过自举)以及 GEE 技术的新技术。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Low movement, deep-learned sitting patterns, and sedentary behavior in the International Study of Childhood Obesity, Lifestyle and the Environment (ISCOLE).
国际儿童肥胖、生活方式和环境研究 (ISCOLE) 中的低运动、深入的坐姿模式和久坐行为。
- DOI:10.1038/s41366-023-01364-8
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Hibbing,PaulR;Carlson,JordanA;Steel,Chelsea;Greenwood-Hickman,MikaelAnne;Nakandala,Supun;Jankowska,MartaM;Bellettiere,John;Zou,Jingjing;LaCroix,AndreaZ;Kumar,Arun;Katzmarzyk,PeterT;Natarajan,Loki
- 通讯作者:Natarajan,Loki
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Loki Natarajan其他文献
Loki Natarajan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Loki Natarajan', 18)}}的其他基金
Developing and validating prognostic metabolomic signatures of diabetic kidney disease
开发和验证糖尿病肾病的预后代谢组学特征
- 批准号:
9418599 - 财政年份:2017
- 资助金额:
$ 60.76万 - 项目类别:
Developing and validating prognostic metabolomic signatures of diabetic kidney disease
开发和验证糖尿病肾病的预后代谢组学特征
- 批准号:
9306637 - 财政年份:2017
- 资助金额:
$ 60.76万 - 项目类别:
Developing and validating prognostic metabolomic signatures of diabetic kidney disease
开发和验证糖尿病肾病的预后代谢组学特征
- 批准号:
9923450 - 财政年份:2017
- 资助金额:
$ 60.76万 - 项目类别:
TREC Bioinformatics and Biostatistics Shared Resource Core
TREC 生物信息学和生物统计学共享资源核心
- 批准号:
8072505 - 财政年份:2011
- 资助金额:
$ 60.76万 - 项目类别:
Error in diet assessment: impact on diet-cancer trials
饮食评估错误:对饮食癌症试验的影响
- 批准号:
7114735 - 财政年份:2006
- 资助金额:
$ 60.76万 - 项目类别:
Errors in Diet Assessment: Impact on Diet-Cancer trials
饮食评估中的错误:对饮食癌症试验的影响
- 批准号:
7226987 - 财政年份:2006
- 资助金额:
$ 60.76万 - 项目类别:
TREC Bioinformatics and Biostatistics Shared Resource Core
TREC 生物信息学和生物统计学共享资源核心
- 批准号:
8376486 - 财政年份:
- 资助金额:
$ 60.76万 - 项目类别:
TREC Bioinformatics and Biostatistics Shared Resource Core
TREC 生物信息学和生物统计学共享资源核心
- 批准号:
8688940 - 财政年份:
- 资助金额:
$ 60.76万 - 项目类别:
TREC Bioinformatics and Biostatistics Shared Resource Core
TREC 生物信息学和生物统计学共享资源核心
- 批准号:
8688949 - 财政年份:
- 资助金额:
$ 60.76万 - 项目类别:
相似国自然基金
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Tenascin-X对急性肾损伤血管内皮细胞的保护作用及机制研究
- 批准号:82300764
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACSS2介导的乙酰辅酶a合成在巨噬细胞组蛋白乙酰化及急性肺损伤发病中的作用机制研究
- 批准号:82370084
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
KIF5B调控隧道纳米管介导的线粒体转运对FLT3-ITD阳性急性髓系白血病的作用机制
- 批准号:82370175
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
PHF6突变通过相分离调控YTHDC2-m6A-SREBP2信号轴促进急性T淋巴细胞白血病发生发展的机制研究
- 批准号:82370165
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Characterizing Acute Exercise Response in Restrictive Eating Disorders
限制性饮食失调的急性运动反应特征
- 批准号:
10739107 - 财政年份:2023
- 资助金额:
$ 60.76万 - 项目类别:
Uncovering proximal antecedents to Black male suicide using real-time approaches
使用实时方法揭示黑人男性自杀的近因
- 批准号:
10643956 - 财政年份:2022
- 资助金额:
$ 60.76万 - 项目类别:
Uncovering proximal antecedents to Black male suicide using real-time approaches
使用实时方法揭示黑人男性自杀的近因
- 批准号:
10448759 - 财政年份:2022
- 资助金额:
$ 60.76万 - 项目类别:
MoodRing: A multi-stakeholder platform to monitor and manage adolescents' depression in primary care with passive mobile sensing.
MoodRing:一个多利益相关者平台,通过被动移动传感来监测和管理初级保健中的青少年抑郁症。
- 批准号:
10399975 - 财政年份:2019
- 资助金额:
$ 60.76万 - 项目类别:
MoodRing: A multi-stakeholder platform to monitor and manage adolescents' depression in primary care with passive mobile sensing.
MoodRing:一个多利益相关者平台,通过被动移动传感来监测和管理初级保健中的青少年抑郁症。
- 批准号:
9908603 - 财政年份:2019
- 资助金额:
$ 60.76万 - 项目类别: