Developing and validating prognostic metabolomic signatures of diabetic kidney disease
开发和验证糖尿病肾病的预后代谢组学特征
基本信息
- 批准号:9923450
- 负责人:
- 金额:$ 33.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAdoptedAdultAlbuminuriaAlgorithmsAmericanBioinformaticsBiologicalBiological MarkersBiologyCaringCell physiologyCessation of lifeChronic DiseaseChronic Kidney FailureChronic Kidney InsufficiencyClinicalClinical TrialsCollaborationsComplications of Diabetes MellitusComputing MethodologiesDataData SetDevelopmentDiabetes MellitusDiabetic NephropathyDiagnosisDiseaseDisease ManagementDisease ProgressionEnzymesEvaluationFundingFutureGenomicsGenotypeGoalsHealthcareHeterogeneityHospitalizationKidneyKidney DiseasesLaboratoriesLeadLinkLiquid substanceLongitudinal cohortMedicalMedical GeneticsMethodsModelingMolecularNon-Insulin-Dependent Diabetes MellitusPathologicPathway interactionsPatientsPatternPhysiologicalPima IndianPlayProcessPrognostic MarkerProspective cohortProteomicsPublishingRecommendationRegulationRenal functionReportingReproducibilityResearchRiskSamplingSampling StudiesStatistical MethodsStatistical ModelsTechniquesTestingTrainingType 2 diabeticUrineValidationWorkbioinformatics toolbiological heterogeneitychemical associationcohortcomorbiditydesigndiabeticdiabetic patientgenetic signaturegenomic biomarkerhigh dimensionalityhigh riskimprovedinnovationinsightkidney dysfunctionmachine learning methodmetabolomemetabolomicsmodel developmentmortalitymultidimensional datanephrogenesisnetwork modelsnovelopen sourcepersonalized medicinepredictive modelingpredictive signaturepredictive testprematureprognosticprognostic signatureprospectiveprotein metaboliterandom foresttargeted treatmenttherapeutic targettoolurinary
项目摘要
PROJECT SUMMARY/ABSTRACT
Rationale. Diabetes is a leading cause of renal disease, accounting for 40% of the estimated 20 million US
adult cases of chronic kidney disease. There is, however, substantial heterogeneity across diabetic patients
with regards to development of kidney disease. Hence, there is an urgent need to identify prognostic
biomarkers that can provide early and reliable evidence of future kidney disease, so that high-risk patients can
receive optimal medical care. Existing clinical, proteomic and genomic markers do not consistently nor
accurately predict kidney function decline. Metabolomics, a systematic evaluation of the end-products of
cellular function in fluids, has the potential to inform physiological and pathological effects of chronic diseases.
Metabolomic analysis combined with advanced quantitative methods could play a key role in building clinically
useful prognostic signatures of diabetic kidney disease. Yet, development of computational methods with
adequate rigor has lagged behind the technical capacity to perform large scale quantitative metabolomics. In
this proposal we aim to address this computational gap in diabetic kidney disease research. Aims. We will
implement rigorous computational methods to identify robust prognostic metabolite + clinical + genetic
signatures of diabetic kidney disease progression. Specifically, we aim to (i) test the accuracy of previous
signatures, and apply state-of-the-art analytic techniques and novel statistical methods to identify new
multivariate metabolite sets for predicting kidney disease progression; (ii) quantify patterns of co-regulation of
metabolites in diabetic kidney disease, and develop new tools in network biology to discover novel enzymes,
proteins, metabolites, and molecular pathways which are implicated in diabetic kidney disease progression; (iii)
test if these models can accurately predict kidney disease progression in independent prospective cohorts.
Methods. Using clinical, genetic and metabolomic data from large prospective cohorts of > 1200 diverse, well-
characterized patients with Type 2 diabetes, we will apply statistical methods for variable selection (e.g.,
penalized regression), and machine learning methods (e.g., random forest), which are known to perform well in
the high-dimensional setting, to identify robust and parsimonious signatures of kidney disease progression. We
will quantify inter-metabolite co-regulation patterns and infer biological pathways implicated in diabetic kidney
disease. Throughout the modeling process, a rigorous training-validation paradigm will be adopted in order to
improve reproducibility of models and reduce chance findings. Impact. A major product of this work will be the
development of a clinically useful algorithm for identifying diabetic patients at high-risk for kidney function
decline. Our findings will also provide insight into markers of renal dysfunction, and elucidate possible
therapeutic targets for treating diabetic kidney disease, thus potentially informing the design of future clinical
trials.
项目摘要/摘要
理由。糖尿病是肾脏疾病的主要原因,占美国2000万估计的40%
成人慢性肾脏疾病病例。但是,糖尿病患者之间存在很大的异质性
关于肾脏疾病的发展。因此,迫切需要识别预后
可以提供未来肾脏疾病的早期可靠证据的生物标志物,以便高危患者可以
获得最佳医疗服务。现有的临床,蛋白质组学和基因组标志物并非一致或
准确预测肾功能下降。代谢组学,对最终产物的系统评估
流体中的细胞功能有可能为慢性疾病的生理和病理作用提供信息。
代谢组分析与高级定量方法结合使用,可以在临床上构建中起关键作用
糖尿病肾脏疾病的有用预后特征。然而,开发与
足够的严格落后于执行大规模定量代谢组学的技术能力。在
我们的建议旨在解决糖尿病肾脏疾病研究中的计算差距。目标。我们将
实施严格的计算方法来识别强大的预后代谢物 +临床 +遗传
糖尿病肾脏疾病进展的特征。具体来说,我们的目标是(i)测试以前的准确性
签名,并应用最先进的分析技术和新颖的统计方法来识别新的
用于预测肾脏疾病进展的多元代谢物集; (ii)量化共同调节的模式
糖尿病肾脏疾病中的代谢物,并开发网络生物学的新工具,以发现新型酶,
与糖尿病肾脏疾病进展有关的蛋白质,代谢产物和分子途径; (iii)
测试这些模型是否可以准确预测独立前瞻性队列中的肾脏疾病进展。
方法。使用临床,遗传和代谢组数据,来自> 1200种不同的前瞻性人群
表征2型糖尿病患者,我们将应用统计方法进行可变选择(例如,
惩罚回归)和机器学习方法(例如随机森林),已知在
高维环境,以确定肾脏疾病进展的强大和简约的特征。我们
将量化与糖尿病肾脏有关的量子间共同调节模式和推断生物学途径
疾病。在整个建模过程中,将采用严格的培训验证范式以进行
提高模型的可重复性并减少机会发现。影响。这项工作的主要产品将是
开发一种临床上有用的算法,用于鉴定高危肾脏功能的糖尿病患者
衰退。我们的发现还将提供对肾功能障碍标记的见解,并阐明可能
治疗糖尿病肾脏疾病的治疗靶标,因此有可能告知未来临床的设计
试验。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Host variables confound gut microbiota studies of human disease.
- DOI:10.1038/s41586-020-2881-9
- 发表时间:2020-11
- 期刊:
- 影响因子:64.8
- 作者:Vujkovic-Cvijin I;Sklar J;Jiang L;Natarajan L;Knight R;Belkaid Y
- 通讯作者:Belkaid Y
Utilizing stability criteria in choosing feature selection methods yields reproducible results in microbiome data.
- DOI:10.1111/biom.13481
- 发表时间:2022-09
- 期刊:
- 影响因子:1.9
- 作者:Jiang, Lingjing;Haiminen, Niina;Carrieri, Anna-Paola;Huang, Shi;Vazquez-Baeza, Yoshiki;Parida, Laxmi;Kim, Ho-Cheol;Swafford, Austin D.;Knight, Rob;Natarajan, Loki
- 通讯作者:Natarajan, Loki
A generalized covariate-adjusted top-scoring pair algorithm with applications to diabetic kidney disease stage classification in the Chronic Renal Insufficiency Cohort (CRIC) Study.
- DOI:10.1186/s12859-023-05171-w
- 发表时间:2023-02-20
- 期刊:
- 影响因子:3
- 作者:
- 通讯作者:
Urinary Metabolome Analyses of Patients with Acute Kidney Injury Using Capillary Electrophoresis-Mass Spectrometry.
- DOI:10.3390/metabo11100671
- 发表时间:2021-09-30
- 期刊:
- 影响因子:4.1
- 作者:Saito R;Hirayama A;Akiba A;Kamei Y;Kato Y;Ikeda S;Kwan B;Pu M;Natarajan L;Shinjo H;Akiyama S;Tomita M;Soga T;Maruyama S
- 通讯作者:Maruyama S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Loki Natarajan其他文献
Loki Natarajan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Loki Natarajan', 18)}}的其他基金
Novel computational techniques to detect the relationship between sitting patterns and metabolic syndrome in existing cohort studies.
在现有队列研究中检测坐姿模式与代谢综合征之间关系的新计算技术。
- 批准号:
10228732 - 财政年份:2018
- 资助金额:
$ 33.45万 - 项目类别:
Developing and validating prognostic metabolomic signatures of diabetic kidney disease
开发和验证糖尿病肾病的预后代谢组学特征
- 批准号:
9418599 - 财政年份:2017
- 资助金额:
$ 33.45万 - 项目类别:
Developing and validating prognostic metabolomic signatures of diabetic kidney disease
开发和验证糖尿病肾病的预后代谢组学特征
- 批准号:
9306637 - 财政年份:2017
- 资助金额:
$ 33.45万 - 项目类别:
TREC Bioinformatics and Biostatistics Shared Resource Core
TREC 生物信息学和生物统计学共享资源核心
- 批准号:
8072505 - 财政年份:2011
- 资助金额:
$ 33.45万 - 项目类别:
Error in diet assessment: impact on diet-cancer trials
饮食评估错误:对饮食癌症试验的影响
- 批准号:
7114735 - 财政年份:2006
- 资助金额:
$ 33.45万 - 项目类别:
Errors in Diet Assessment: Impact on Diet-Cancer trials
饮食评估中的错误:对饮食癌症试验的影响
- 批准号:
7226987 - 财政年份:2006
- 资助金额:
$ 33.45万 - 项目类别:
TREC Bioinformatics and Biostatistics Shared Resource Core
TREC 生物信息学和生物统计学共享资源核心
- 批准号:
8376486 - 财政年份:
- 资助金额:
$ 33.45万 - 项目类别:
TREC Bioinformatics and Biostatistics Shared Resource Core
TREC 生物信息学和生物统计学共享资源核心
- 批准号:
8688940 - 财政年份:
- 资助金额:
$ 33.45万 - 项目类别:
TREC Bioinformatics and Biostatistics Shared Resource Core
TREC 生物信息学和生物统计学共享资源核心
- 批准号:
8504995 - 财政年份:
- 资助金额:
$ 33.45万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Morphologic and Kinematic Adaptations of the Subtalar Joint after Ankle Fusion Surgery in Patients with Varus-type Ankle Osteoarthritis
内翻型踝骨关节炎患者踝关节融合手术后距下关节的形态和运动学适应
- 批准号:
10725811 - 财政年份:2023
- 资助金额:
$ 33.45万 - 项目类别:
Cafe Move: A Novel Program for Prevention of Age-Related Physical Frailty
Cafe Move:预防与年龄相关的身体虚弱的新计划
- 批准号:
10861960 - 财政年份:2023
- 资助金额:
$ 33.45万 - 项目类别:
Informing alcohol policy: The impact of evidence-based alcohol warnings on consumption
告知酒精政策:基于证据的酒精警告对消费的影响
- 批准号:
10565120 - 财政年份:2023
- 资助金额:
$ 33.45万 - 项目类别:
Developing a regionally representative risk assessment tool to identify men at highest risk of HIV acquisition in sub-Saharan Africa
开发具有区域代表性的风险评估工具,以确定撒哈拉以南非洲地区感染艾滋病毒风险最高的男性
- 批准号:
10762645 - 财政年份:2023
- 资助金额:
$ 33.45万 - 项目类别:
Structural and functional studies of YbtPQ for fighting bacterial infections
YbtPQ 对抗细菌感染的结构和功能研究
- 批准号:
10644889 - 财政年份:2023
- 资助金额:
$ 33.45万 - 项目类别: