Mechanobiology of Progenitor Cells in Heterotopic Ossification
异位骨化中祖细胞的力学生物学
基本信息
- 批准号:10401824
- 负责人:
- 金额:$ 33.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:ACVR1 geneAdoptionBiologicalBiological AssayBiomechanicsBone Morphogenetic ProteinsBone TissueCartilageCell Differentiation processCell Fate ControlCell Surface ReceptorsCell TransplantationCellsCellular biologyCellularityChondrocytesChondrogenesisConnective TissueConnective and Soft TissueDNA Sequence AlterationDataDevelopmentDirect Lytic FactorsDiseaseEnvironmentExcisionFiberGenesGeneticGenetic DiseasesHeterotopic OssificationHumanHuman GeneticsImpairmentIn VitroInflammatoryInjuryInvestigationLesionLigandsLinkMechanicsMediatingMedicineMesenchymalMesenchymal Stem CellsMolecular BiologyMusMuscleMuscle FibersMuscle satellite cellMutationNatural regenerationOsteoblastsOsteogenesisOutcomePathway interactionsPhysiologic OssificationPopulationProcessProductionPropertyReceptor Mediated Signal TransductionResearchSignal PathwaySignal TransductionSignaling ProteinSkeletal MuscleTestingTherapeutic InterventionTissue DifferentiationTissue EngineeringTissuesTransplantationWritingbasebonebone morphogenetic protein receptor type Iclinical applicationcrosslinkdensityextracellulargain of functionhealingimpaired capacityin vivoinsightlipid biosynthesismalformationmechanical propertiesmechanotransductionmouse modelmultidisciplinarymuscle regenerationmutantnew therapeutic targetnon-geneticnovelosteogenicphysical propertypreventprogenitorprogramsprogressive myositis ossificansrare genetic disorderreceptorreconstitutionrepairedresponserestorationsatellite cellskeletalstem cell biologystem cell populationstem cellstherapy developmenttissue injurytissue repairwoundwound environmentwound healing
项目摘要
Abstract
Although rare genetic disorders directly impact relatively small segments of the population, they are caused by
mutations in genes with such critical importance that perturbed function is rarely tolerated, and therefore offer
unique insight into fundamental cellular mechanisms. One such disease, fibrodysplasia ossificans progressiva
(FOP), is caused by misregulated control of cell fate decisions that leads to congenital skeletal malformations
and disabling extra-skeletal (heterotopic) endochondral ossification (HO) that often forms in response to tissue
injury. Notably, this de novo bone formation is associated with an impaired muscle repair response. We
identified that all familial and sporadic cases with classic features of FOP carry the same heterozygous
mutation in ACVR1/ALK2 (R206H; c.617G>A), a cell surface receptor that mediates signal transduction of
bone morphogenetic proteins (BMPs). Our data showed that the ACVR1 R206H mutant receptors mildly
activate the BMP signaling pathway in the presence or absence of BMP ligands. This proposal seeks to
identify how the resulting gain of function in ACVR1/BMP signaling diverts the program of muscle repair from
one that normally culminates in restoration of muscle tissue to one in which muscle injury leads to
differentiation of endogenous mesenchymal progenitor cells (MSCs) to chondrocytes and osteoblasts and the
formation of heterotopic bone tissue. Previous studies confirmed cell autonomous effects of the mutation on
MSC differentiation, however, while the mutation enhances MSC chondro/osteogenesis, we have also
established that mutant cells do not spontaneously differentiate, but require additional signals. Since
commitment and differentiation of tissue-resident progenitor cells is regulated by signals from the tissue
microenvironment, and the tissue microenvironment is itself defined by matrix production by these
differentiating cells, this proposal focuses on how enhanced BMP pathway signaling in FOP changes cellular
interpretation and fabrication of the biomechanical environment during muscle repair. Based on our preliminary
data showing altered physical (mechanical) properties of mutant skeletal muscle tissue following injury, this
proposal will first investigate and identify the mechanisms (cellularity, matrix, and stiffness) through which
ACVR1 R206H mutant tissue alters the connective tissue microenvironment during the early response to
muscle injury (Aim 1). Next, we will examine the mechano-sensing signaling mechanisms through which
chondro/osseous mesenchymal (non-myogenic) progenitor cells (MSCs) differentially sense and interpret
signals from their microenvironment (Aim 2). Finally, we will determine the effects of the mutant tissue
microenvironment on endogenous myogenic muscle progenitor cells (MuSCs, Aim 3). Together, these data will
identify novel mechano-regulatory mechanisms controlling cell differentiation in heterotopic ossification and
muscle repair and as well as reveal new targets for therapeutic interventions to prevent genetic and non-
genetic forms of HO and to engineer tissues for clinical application.
抽象的
尽管罕见的遗传疾病直接影响相对较小的人群,但它们是由
具有至关重要的基因突变,很少耐受扰动功能,因此提供
对基本细胞机制的独特见解。一种这样的疾病,是纤维肿瘤的渗透性疾病
(FOP),是由于对细胞命运决策的控制不正常引起的,导致先天性骨骼畸形
并禁用经常会根据组织形成的骨骼外骨骼(异位)骨化骨化(HO)
受伤。值得注意的是,这种从头形成与肌肉修复反应受损有关。我们
确定所有具有FOP经典特征的家族和零星案例携带相同的杂合子
ACVR1/ALK2(R206H; C.617G> A)中的突变,一种细胞表面受体,可介导信号转导的信号转导
骨形态发生蛋白(BMP)。我们的数据表明,ACVR1 R206H突变体受体温和
在存在或不存在BMP配体的情况下激活BMP信号通路。该提议试图
确定ACVR1/BMP信号中产生的功能增长如何从肌肉修复程序中转移
通常在肌肉组织中恢复肌肉的一种,其中肌肉损伤导致
内源性间充质祖细胞(MSC)与软骨细胞和成骨细胞的分化
异位骨组织的形成。先前的研究证实了突变对细胞的自主作用
但是,MSC分化,尽管突变增强了MSC软骨/成骨的作用,但我们也有
确定突变细胞不会自发区分,而是需要其他信号。自从
组织居民祖细胞的承诺和分化受组织的信号调节
微环境和组织微环境本身是由基质产生定义的
区分细胞,该提案重点是FOP中增强的BMP途径信号传导如何改变细胞
肌肉修复过程中生物力学环境的解释和制造。基于我们的初步
数据显示突变骨骼肌组织受伤后的物理(机械)特性改变了,这
提案将首先调查并确定机制(细胞,基质和刚度)
ACVR1 R206H突变组织在早期反应期间改变结缔组织微环境
肌肉损伤(AIM 1)。接下来,我们将检查机械感应信号机制
软骨/骨间充质(非生物基因)祖细胞(MSC)差异性地感知并解释
来自微环境的信号(AIM 2)。最后,我们将确定突变组织的影响
内源性肌肌肉祖细胞的微环境(MUSC,AIM 3)。这些数据将在一起
确定控制异位骨化中细胞分化的新型机械调节机制和
肌肉修复,并揭示用于预防遗传和非遗传干预措施的新目标
HO的遗传形式和用于临床应用的工程组织。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fibrodysplasia ossificans progressiva (FOP): A disorder of osteochondrogenesis.
- DOI:10.1016/j.bone.2020.115539
- 发表时间:2020-11
- 期刊:
- 影响因子:4.1
- 作者:Kaplan FS;Al Mukaddam M;Stanley A;Towler OW;Shore EM
- 通讯作者:Shore EM
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert L Mauck其他文献
Robert L Mauck的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert L Mauck', 18)}}的其他基金
Activation of endogenous progenitors via a nanoparticle-conjugated fibrous system to enhance meniscus repair
通过纳米颗粒共轭纤维系统激活内源祖细胞以增强半月板修复
- 批准号:
10607306 - 财政年份:2023
- 资助金额:
$ 33.48万 - 项目类别:
Knee Joint Resurfacing with Anatomic Tissue Engineered Osteochondral Implants
使用解剖组织工程骨软骨植入物进行膝关节表面置换
- 批准号:
10704534 - 财政年份:2020
- 资助金额:
$ 33.48万 - 项目类别:
Knee Joint Resurfacing with Anatomic Tissue Engineered Osteochondral Implants
使用解剖组织工程骨软骨植入物进行膝关节表面置换
- 批准号:
10248368 - 财政年份:2020
- 资助金额:
$ 33.48万 - 项目类别:
Hydrogel Delivery of Extracellular Vesicles to Treat Osteoarthritis
水凝胶递送细胞外囊泡治疗骨关节炎
- 批准号:
10631851 - 财政年份:2020
- 资助金额:
$ 33.48万 - 项目类别:
Hydrogel Delivery of Extracellular Vesicles to Treat Osteoarthritis
水凝胶递送细胞外囊泡治疗骨关节炎
- 批准号:
10176189 - 财政年份:2020
- 资助金额:
$ 33.48万 - 项目类别:
Knee Joint Resurfacing with Anatomic Tissue Engineered Osteochondral Implants
使用解剖组织工程骨软骨植入物进行膝关节表面置换
- 批准号:
10454898 - 财政年份:2020
- 资助金额:
$ 33.48万 - 项目类别:
Mechanobiology of Progenitor Cells in Heterotopic Ossification
异位骨化中祖细胞的力学生物学
- 批准号:
9926811 - 财政年份:2018
- 资助金额:
$ 33.48万 - 项目类别:
相似国自然基金
采用羟基磷酸化策略提高抗菌肽生物活性的构效关系研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
采用合成生物学方法建立高效合成中长链PHA的恶臭假单胞菌KT2440小基因组细胞工厂
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
采用合成生物学技术在苯系物高效降解菌中构建多环芳烃代谢通路并定向改造菌株的耐盐能力
- 批准号:
- 批准年份:2020
- 资助金额:57 万元
- 项目类别:面上项目
采用分子组装新策略构筑聚类肽生物高分子材料的研究
- 批准号:
- 批准年份:2020
- 资助金额:59 万元
- 项目类别:面上项目
采用单像素时间分辨测量的生物组织NIR-II宽场荧光断层成像
- 批准号:62075156
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Commercialization Readiness for Nerve Tape: a nerve repair coaptation aid
神经胶带的商业化准备:神经修复接合辅助工具
- 批准号:
10698977 - 财政年份:2023
- 资助金额:
$ 33.48万 - 项目类别:
Allogeneic BAFF Ligand Based CAR T Cells as a Novel Therapy for B Cell Malignancies
基于同种异体 BAFF 配体的 CAR T 细胞作为 B 细胞恶性肿瘤的新疗法
- 批准号:
10698759 - 财政年份:2023
- 资助金额:
$ 33.48万 - 项目类别:
Increasing the Value of Genomic Medicine through Private Pharmacogenomic Reporting
通过私人药物基因组报告增加基因组医学的价值
- 批准号:
10760119 - 财政年份:2023
- 资助金额:
$ 33.48万 - 项目类别:
Identification of blood biomarkers predictive of organ aging
鉴定预测器官衰老的血液生物标志物
- 批准号:
10777065 - 财政年份:2023
- 资助金额:
$ 33.48万 - 项目类别:
Unlocking New Chemistries in Extant Enzymes for Synthesizing Bioactive Molecules
解锁现有酶中用于合成生物活性分子的新化学成分
- 批准号:
10784165 - 财政年份:2023
- 资助金额:
$ 33.48万 - 项目类别: