A robotic multi-armed two-photon microscope for imaging neural interactions across multiple brain areas
机器人多臂双光子显微镜,用于对多个大脑区域的神经相互作用进行成像
基本信息
- 批准号:10401607
- 负责人:
- 金额:$ 76.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AchievementAddressAdoptionAnatomyAnimal BehaviorAnimalsAreaArticular Range of MotionAuditory areaBRAIN initiativeBasal GangliaBehaviorBrainBrain regionCallithrixCellsCerebellumCognitiveColorCommunitiesDataDevelopmentDistalFeedbackFluorescenceFreedomGenerationsGeneticHeadImageImaging DeviceImaging TechniquesIndividualInstitutionIntuitionLateral Geniculate BodyLightingLocationMechanicsMethodsMicroscopeMicroscopyMonitorMotionMotorMotor CortexMusNeuronsNeurosciencesOctopusOperative Surgical ProceduresOpticsPerformancePopulationPositioning AttributePreparationPrimatesPulvinar structureReadinessResearchRobotRoboticsRodentRoleRouteScanningSensoryShippingSiteSystemTechniquesTechnologyTestingThalamic structureTimeTissuesVisible RadiationVisualVisual CortexWorkarmarm movementawakebasecell typedesigndexterityflexibilityimaging modalityimaging studyimaging systemimprovedkinematicslensmicroendoscopemicroscopic imagingmillimeterminiaturizemotor behaviornew technologyopen sourceoptical imagingoptogeneticsrelating to nervous systemroutine imagingsuperior colliculus Corpora quadrigeminatooltwo-photonusability
项目摘要
Abstract
Among the BRAIN Initiative’s most important achievements are the genetic identification of many new neurons- types and the creation of genetic tools to access these cell types. However, uncovering the functional roles of these neuron types and how they cooperate across brain areas to generate mammalian behavior remains an outstanding challenge. Thus, inventing ways to monitor how large populations of genetically identified neurons interact across multiple regions of the brain is crucial if we are to comprehend global brain dynamics. Today, electrical recording methods can track neural activity across multiple areas but cannot easily target neurons of specific types. Widefield and two-photon mesoscopes can image the dynamics of identified neuron-types across millimeter-scale regions of cortical tissue but cannot access the distributed sets of cortical and subcortical regions that comprise the major nodes of the brain’s sensory, cognitive, or motor circuits. To clear this impasse, we invented the ‘Octopus’, a robotic imaging system with multiple articulated optical arms, each a two-photon microscope, that can be flexibly positioned around the brain to record neural activity concurrently in multiple superficial or deep areas of a head-restrained behaving rodent or primate. We designed, built, and tested an initial version of the Octopus with 4 arms, each of which has 5 mechanical degrees of freedom and a micro-optic probe at its tip for two-photon imaging. The design of the arms is based on ideas from surgical robotics and uses remote center-of-motion kinematics to provide a versatile repertoire of robotic arm movements. Using this system, a visual neuroscientist can concurrently image neural activity in the lateral geniculate nucleus, visual cortex, superior colliculus, and pulvinar, and a motor neurophysiologist can image activity in the motor cortex, basal ganglia, cerebellum, and motor thalamus. In this project, we will enhance the optical and mechanical design of each Octopus arm and prepare the system for wide dissemination through open-source and commercial routes. Each arm will gain the optical functionality of a state-of-the-art, two-photon microscope for imaging large-scale neural ensemble activity. Specifically, each arm will incorporate optogenetics and allow dual-color two-photon imaging over an 800-µm- wide field of view. These capabilities will allow neuroscientists to monitor two genetically identified neuron- types in each of 4 brain areas, to perturb the dynamics of these cells with optogenetics, and to observe the effects of these manipulations on animal behavior and activity in the other 3 areas. We will also streamline the mechanical design to simplify the initial assembly of the Octopus for new users and to endow the robot arms with additional dexterity. The new design will also be motorized and will provide users with highly intuitive means of precisely steering the robot arms. Finally, to iteratively improve the performance and usability of the Octopus and to validate its readiness for dissemination as a groundbreaking new technology, we will work closely with 7 beta-tester labs to implement multi-area neural imaging studies in awake behaving mice and marmosets.
抽象的
BRAIN Initiative 最重要的成就之一是对许多新神经元类型进行了遗传鉴定,并创建了访问这些细胞类型的遗传工具,揭示了这些神经元类型的功能作用以及它们如何跨大脑区域合作以产生哺乳动物行为。因此,如果我们要理解全球大脑动态,发明方法来监测大量经过基因识别的神经元如何在大脑的多个区域相互作用至关重要。如今,电记录方法可以跟踪多个区域的神经活动,但无法追踪。轻松针对特定类型的神经元。宽场和双光子介观镜可以对皮质组织毫米级区域内已识别神经元类型的动态进行成像,但无法访问构成大脑感觉、认知或运动回路主要节点的皮质和皮质下区域的分布式集合。为了打破这一僵局,我们发明了“章鱼”,这是一种机器人成像系统,具有多个铰接光学臂,每个光学臂都有一个双光子显微镜,可以灵活地放置在大脑周围,同时记录神经活动。我们设计、建造并测试了具有 4 个手臂的章鱼的初始版本,每个手臂都有 5 个机械自由度,并在其尖端有一个微光学探针。用于双光子成像的手臂的设计基于外科机器人学的想法,并使用远程运动中心运动学来提供机器人手臂运动的多种功能,视觉神经科学家可以同时使用该系统。对外侧膝状核、视觉皮层、上丘和枕丘的神经活动进行成像,运动神经生理学家可以对运动皮层、基底神经节、小脑和运动丘脑的活动进行成像。在这个项目中,我们将增强光学和机械功能。每个章鱼臂的设计,并为通过开源和商业途径广泛传播该系统做好准备,每个臂都将获得最先进的双光子显微镜的光学功能,用于成像。具体来说,每个手臂都将结合光遗传学,并允许在 800 微米宽的视野内进行双色双光子成像,这些功能将使神经科学家能够监测每个手臂中两种基因识别的神经元类型。 4 个大脑区域,通过光遗传学扰乱这些细胞的动态,并观察这些操作对其他 3 个区域的动物行为和活动的影响。我们还将简化机械设计,以简化初始组装。为新用户设计的章鱼,赋予机器人手臂额外的灵活性。新设计还将实现机动化,为用户提供高度直观的精确操控机器人手臂的方法,最终不断提高章鱼的性能和可用性。为了验证其作为一项突破性新技术的传播准备,我们将与 7 个 beta 测试实验室密切合作,在清醒行为的小鼠和狨猴中实施多区域神经成像研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MARK J SCHNITZER其他文献
MARK J SCHNITZER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MARK J SCHNITZER', 18)}}的其他基金
A robotic multi-armed two-photon microscope for imaging neural interactions across multiple brain areas
机器人多臂双光子显微镜,用于对多个大脑区域的神经相互作用进行成像
- 批准号:
10675439 - 财政年份:2022
- 资助金额:
$ 76.78万 - 项目类别:
Multi-color optical voltage imaging of neural activity in behaving animals
行为动物神经活动的多色光学电压成像
- 批准号:
10415945 - 财政年份:2021
- 资助金额:
$ 76.78万 - 项目类别:
A comprehensive dissection of cell types, circuits and molecular adaptations during opioid use
对阿片类药物使用过程中的细胞类型、回路和分子适应的全面剖析
- 批准号:
10410556 - 财政年份:2021
- 资助金额:
$ 76.78万 - 项目类别:
Multi-color optical voltage imaging of neural activity in behaving animals
行为动物神经活动的多色光学电压成像
- 批准号:
10166236 - 财政年份:2021
- 资助金额:
$ 76.78万 - 项目类别:
Dissecting neocortical field potential dynamics using optical voltage imaging in genetically targeted cell-types
使用光学电压成像在基因靶向细胞类型中剖析新皮质场电位动态
- 批准号:
10338619 - 财政年份:2021
- 资助金额:
$ 76.78万 - 项目类别:
A comprehensive dissection of cell types, circuits and molecular adaptations during opioid use
对阿片类药物使用过程中的细胞类型、回路和分子适应的全面剖析
- 批准号:
10302852 - 财政年份:2021
- 资助金额:
$ 76.78万 - 项目类别:
A comprehensive dissection of cell types, circuits and molecular adaptations during opioid use
对阿片类药物使用过程中的细胞类型、回路和分子适应的全面剖析
- 批准号:
10598151 - 财政年份:2021
- 资助金额:
$ 76.78万 - 项目类别:
Routing of SPW-R content via distinct hippocampal output pathways
通过不同的海马输出途径进行 SPW-R 内容的路由
- 批准号:
10202754 - 财政年份:2017
- 资助金额:
$ 76.78万 - 项目类别:
Large-scale dual-color two-photon calcium imaging in awake behaving animals
清醒行为动物的大规模双色双光子钙成像
- 批准号:
9788541 - 财政年份:2016
- 资助金额:
$ 76.78万 - 项目类别:
Large-scale dual-color two-photon calcium imaging in awake behaving animals
清醒行为动物的大规模双色双光子钙成像
- 批准号:
9346634 - 财政年份:2016
- 资助金额:
$ 76.78万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Core A: Administrative, Career Development, and Research Integration Core
核心 A:行政、职业发展和研究整合核心
- 批准号:
10630466 - 财政年份:2023
- 资助金额:
$ 76.78万 - 项目类别:
Optimizing HEALing in Ohio Communities (OHiO)-Health Equity Supplement
优化俄亥俄州社区 (OHiO) 的治疗 - 健康公平补充
- 批准号:
10890393 - 财政年份:2023
- 资助金额:
$ 76.78万 - 项目类别:
Enhancing Hypnotic Medication Discontinuation in Primary Care through Supervised Medication Tapering and Digital Cognitive Behavioral Insomnia Therapy
通过监督药物逐渐减量和数字认知行为失眠治疗,加强初级保健中催眠药物的停药
- 批准号:
10736443 - 财政年份:2023
- 资助金额:
$ 76.78万 - 项目类别:
HIV Clinic-based Screening for Geriatric Syndromes in Older Adults with HIV
基于艾滋病毒临床的艾滋病毒感染者老年综合症筛查
- 批准号:
10761940 - 财政年份:2023
- 资助金额:
$ 76.78万 - 项目类别:
ADAPT: Adaptive Decision support for Addiction Treatment
ADAPT:成瘾治疗的自适应决策支持
- 批准号:
10810953 - 财政年份:2023
- 资助金额:
$ 76.78万 - 项目类别: