A robotic multi-armed two-photon microscope for imaging neural interactions across multiple brain areas
机器人多臂双光子显微镜,用于对多个大脑区域的神经相互作用进行成像
基本信息
- 批准号:10401607
- 负责人:
- 金额:$ 76.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AchievementAddressAdoptionAnatomyAnimal BehaviorAnimalsAreaArticular Range of MotionAuditory areaBRAIN initiativeBasal GangliaBehaviorBrainBrain regionCallithrixCellsCerebellumCognitiveColorCommunitiesDataDevelopmentDistalFeedbackFluorescenceFreedomGenerationsGeneticHeadImageImaging DeviceImaging TechniquesIndividualInstitutionIntuitionLateral Geniculate BodyLightingLocationMechanicsMethodsMicroscopeMicroscopyMonitorMotionMotorMotor CortexMusNeuronsNeurosciencesOctopusOperative Surgical ProceduresOpticsPerformancePopulationPositioning AttributePreparationPrimatesPulvinar structureReadinessResearchRobotRoboticsRodentRoleRouteScanningSensoryShippingSiteSystemTechniquesTechnologyTestingThalamic structureTimeTissuesVisible RadiationVisualVisual CortexWorkarmarm movementawakebasecell typedesigndexterityflexibilityimaging modalityimaging studyimaging systemimprovedkinematicslensmicroendoscopemicroscopic imagingmillimeterminiaturizemotor behaviornew technologyopen sourceoptical imagingoptogeneticsrelating to nervous systemroutine imagingsuperior colliculus Corpora quadrigeminatooltwo-photonusability
项目摘要
Abstract
Among the BRAIN Initiative’s most important achievements are the genetic identification of many new neurons- types and the creation of genetic tools to access these cell types. However, uncovering the functional roles of these neuron types and how they cooperate across brain areas to generate mammalian behavior remains an outstanding challenge. Thus, inventing ways to monitor how large populations of genetically identified neurons interact across multiple regions of the brain is crucial if we are to comprehend global brain dynamics. Today, electrical recording methods can track neural activity across multiple areas but cannot easily target neurons of specific types. Widefield and two-photon mesoscopes can image the dynamics of identified neuron-types across millimeter-scale regions of cortical tissue but cannot access the distributed sets of cortical and subcortical regions that comprise the major nodes of the brain’s sensory, cognitive, or motor circuits. To clear this impasse, we invented the ‘Octopus’, a robotic imaging system with multiple articulated optical arms, each a two-photon microscope, that can be flexibly positioned around the brain to record neural activity concurrently in multiple superficial or deep areas of a head-restrained behaving rodent or primate. We designed, built, and tested an initial version of the Octopus with 4 arms, each of which has 5 mechanical degrees of freedom and a micro-optic probe at its tip for two-photon imaging. The design of the arms is based on ideas from surgical robotics and uses remote center-of-motion kinematics to provide a versatile repertoire of robotic arm movements. Using this system, a visual neuroscientist can concurrently image neural activity in the lateral geniculate nucleus, visual cortex, superior colliculus, and pulvinar, and a motor neurophysiologist can image activity in the motor cortex, basal ganglia, cerebellum, and motor thalamus. In this project, we will enhance the optical and mechanical design of each Octopus arm and prepare the system for wide dissemination through open-source and commercial routes. Each arm will gain the optical functionality of a state-of-the-art, two-photon microscope for imaging large-scale neural ensemble activity. Specifically, each arm will incorporate optogenetics and allow dual-color two-photon imaging over an 800-µm- wide field of view. These capabilities will allow neuroscientists to monitor two genetically identified neuron- types in each of 4 brain areas, to perturb the dynamics of these cells with optogenetics, and to observe the effects of these manipulations on animal behavior and activity in the other 3 areas. We will also streamline the mechanical design to simplify the initial assembly of the Octopus for new users and to endow the robot arms with additional dexterity. The new design will also be motorized and will provide users with highly intuitive means of precisely steering the robot arms. Finally, to iteratively improve the performance and usability of the Octopus and to validate its readiness for dissemination as a groundbreaking new technology, we will work closely with 7 beta-tester labs to implement multi-area neural imaging studies in awake behaving mice and marmosets.
抽象的
大脑倡议最重要的成就之一是对许多新神经元的遗传鉴定以及创建遗传工具以获取这些细胞类型。但是,揭示这些神经元类型的功能作用以及它们如何在大脑区域互动以产生哺乳动物行为仍然是一个杰出的挑战。这是发明方法来监测大脑多个区域的遗传鉴定神经元相互作用的大量人群至关重要的,如果我们要理解全球脑动力学。如今,电记录方法可以跟踪多个区域的神经元活动,但不能轻易靶向特定类型的神经元。广场和两光子介质可以对皮质组织的毫米级区域进行鉴定的神经元类型的动态图像,但无法访问构成大脑感觉,认知或运动回路的主要节点的皮质和下皮层区域的分布组。为了清除这种僵局,我们发明了“章鱼”,这是一种具有多个铰接式光臂的机器人成像系统,每个臂都是两个光子显微镜,可以在大脑周围弯曲,以同时记录中性活性,并在头顶行为表现出的辐射啮齿动物或素数的多个表面或深层区域中同时记录中性活性。我们设计,构建和测试了带有4个臂的章鱼的初始版本,每个臂都有5个机械度的自由度和一个微型探针的尖端,用于两光孔成像。武器的设计基于手术机器人技术的想法,并使用遥控中心运动学来提供机器人手臂运动的多功能曲目。使用该系统,视觉神经科学家可以同时对外侧吉格核,视觉皮层,上丘和pulvinar的神经元活性进行图像,运动神经生理学家可以在运动皮层,巴斯神经节,小脑和运动thalamus中成像活性。在这个项目中,我们将增强每个章鱼臂的光学和机械设计,并通过开源和商业路线为系统进行整体传播准备。每个手臂将获得用于成像大规模神经合奏活动的最先进的两光子显微镜的光功能。具体而言,每个臂都将结合光遗传学,并允许在800 µm宽的视野上进行双色两光子成像。这些能力将使神经科学家能够监测4个大脑区域中每一种中的两种遗传鉴定的神经元类型,以扰动这些细胞的动力学,并观察这些操纵对其他3个区域的动物行为和活动的影响。我们还将简化机械设计,以简化新用户的章鱼的初始组件,并赋予机器人武器额外的灵活性。新设计还将进行电动,并将为用户提供精确指导机器人武器的高度直观手段。最后,要迭代地改善章鱼的性能和可用性,并验证其准备就绪作为一种开创性的新技术,我们将与7个Beta-Tester Labs紧密合作,以在行为的小鼠和Marmosets中实施多区域神经成像研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MARK J SCHNITZER其他文献
MARK J SCHNITZER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MARK J SCHNITZER', 18)}}的其他基金
A robotic multi-armed two-photon microscope for imaging neural interactions across multiple brain areas
机器人多臂双光子显微镜,用于对多个大脑区域的神经相互作用进行成像
- 批准号:
10675439 - 财政年份:2022
- 资助金额:
$ 76.78万 - 项目类别:
Multi-color optical voltage imaging of neural activity in behaving animals
行为动物神经活动的多色光学电压成像
- 批准号:
10415945 - 财政年份:2021
- 资助金额:
$ 76.78万 - 项目类别:
A comprehensive dissection of cell types, circuits and molecular adaptations during opioid use
对阿片类药物使用过程中的细胞类型、回路和分子适应的全面剖析
- 批准号:
10410556 - 财政年份:2021
- 资助金额:
$ 76.78万 - 项目类别:
Dissecting neocortical field potential dynamics using optical voltage imaging in genetically targeted cell-types
使用光学电压成像在基因靶向细胞类型中剖析新皮质场电位动态
- 批准号:
10338619 - 财政年份:2021
- 资助金额:
$ 76.78万 - 项目类别:
Multi-color optical voltage imaging of neural activity in behaving animals
行为动物神经活动的多色光学电压成像
- 批准号:
10166236 - 财政年份:2021
- 资助金额:
$ 76.78万 - 项目类别:
A comprehensive dissection of cell types, circuits and molecular adaptations during opioid use
对阿片类药物使用过程中的细胞类型、回路和分子适应的全面剖析
- 批准号:
10302852 - 财政年份:2021
- 资助金额:
$ 76.78万 - 项目类别:
A comprehensive dissection of cell types, circuits and molecular adaptations during opioid use
对阿片类药物使用过程中的细胞类型、回路和分子适应的全面剖析
- 批准号:
10598151 - 财政年份:2021
- 资助金额:
$ 76.78万 - 项目类别:
Routing of SPW-R content via distinct hippocampal output pathways
通过不同的海马输出途径进行 SPW-R 内容的路由
- 批准号:
10202754 - 财政年份:2017
- 资助金额:
$ 76.78万 - 项目类别:
Large-scale dual-color two-photon calcium imaging in awake behaving animals
清醒行为动物的大规模双色双光子钙成像
- 批准号:
9788541 - 财政年份:2016
- 资助金额:
$ 76.78万 - 项目类别:
Large-scale dual-color two-photon calcium imaging in awake behaving animals
清醒行为动物的大规模双色双光子钙成像
- 批准号:
9346634 - 财政年份:2016
- 资助金额:
$ 76.78万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
HIV Clinic-based Screening for Geriatric Syndromes in Older Adults with HIV
基于艾滋病毒临床的艾滋病毒感染者老年综合症筛查
- 批准号:
10761940 - 财政年份:2023
- 资助金额:
$ 76.78万 - 项目类别:
Enhancing Hypnotic Medication Discontinuation in Primary Care through Supervised Medication Tapering and Digital Cognitive Behavioral Insomnia Therapy
通过监督药物逐渐减量和数字认知行为失眠治疗,加强初级保健中催眠药物的停药
- 批准号:
10736443 - 财政年份:2023
- 资助金额:
$ 76.78万 - 项目类别:
Optimizing HEALing in Ohio Communities (OHiO)-Health Equity Supplement
优化俄亥俄州社区 (OHiO) 的治疗 - 健康公平补充
- 批准号:
10890393 - 财政年份:2023
- 资助金额:
$ 76.78万 - 项目类别:
Assessing Clinical Effectiveness and Implementation of Worksite Sleep Health Coaching in Firefighters
评估消防员工作现场睡眠健康指导的临床效果和实施情况
- 批准号:
10585123 - 财政年份:2023
- 资助金额:
$ 76.78万 - 项目类别:
ADAPT: Adaptive Decision support for Addiction Treatment
ADAPT:成瘾治疗的自适应决策支持
- 批准号:
10810953 - 财政年份:2023
- 资助金额:
$ 76.78万 - 项目类别: