Dissecting neocortical field potential dynamics using optical voltage imaging in genetically targeted cell-types

使用光学电压成像在基因靶向细胞类型中剖析新皮质场电位动态

基本信息

  • 批准号:
    10338619
  • 负责人:
  • 金额:
    $ 198.29万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-25 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Measurements of cortical field potentials are widely used throughout basic and clinical neuroscience, including in electroencephalography (EEG), electrocorticography (ECoG) and local field potential (LFP) recordings. However, the neural origins of field potentials remain poorly understood, due to a lack of techniques for dissecting how different classes of cells contribute to field potential signals. To overcome this longstanding barrier, our project applies fluorescent voltage-indicators and instrumentation for optical voltage-imaging that our team created earlier in the NIH BRAIN Initiative. These new tools will enable us to systematically identify the contributions of 12 different cell-types to neocortical field potential activity. To perform cell-type specific recordings of neural transmembrane voltage dynamics, we will express red and green genetically encoded voltage indicators in a wide set of different transgenic mouse lines, each of which allows selective gene expression in one of the pyramidal neuron or interneuron classes of the neocortex. Concurrent with optical recordings, we will perform traditional electrical recordings of cortical LFPs. These joint optical and electrical measurements will be the first of their kind and will yield important insights into how each neuron-type influences spontaneous and stimulus-evoked cortical field potential activity. Across our collection of mouse lines, we will conduct 3 novel types of recordings, each of which uses cutting-edge instrumentation for optical voltage-imaging in up to 2 cell-types at once in awake behaving mice: a) Fiber-optic voltage-sensing, for tracking the voltage dynamics of genetically defined neural populations; b) Wide-field voltage-imaging of voltage oscillations and waves across the cortex in specific cell-types; c) High-speed (1 kHz) optical voltage imaging of spiking dynamics in up to 2 neuron-types at a time. Further, to test the causal role of each neuron class in shaping cortical field potentials, we will also perform chemogenetic inhibition studies in each of the mouse lines. In these studies, we will silence each of the individual neuron-types and observe how the effective removal of this cell-type from cortical circuitry impacts both LFP activity and the population voltage dynamics of other neuron classes. Together, these groundbreaking studies will propel understanding of cortical field potentials in basic and applied neuroscience by providing fundamental insights into how different cell-types shape field potential dynamics. To help assure that our experiments optimally advance conceptual understanding in the field, our team includes 2 computational neuroscientists whose expertise lies in modeling the biophysics of cortical field potentials. To promote transparency and open-science, we will deposit all of the extensive datasets and analyses from our experiments into public repositories.
皮质场电位的测量广泛应用于基础和临床神经科学,包括脑电图 (EEG)、皮质电图 (ECoG) 和局部场电位 (LFP) 记录。然而,由于缺乏剖析不同类别的细胞如何影响场电位信号的技术,人们对场电位的神经起源仍然知之甚少。为了克服这一长期存在的障碍,我们的项目应用了我们团队早期在 NIH BRAIN Initiative 中创建的荧光电压指示器和光学电压成像仪器。这些新工具将使我们能够系统地识别 12 种不同细胞类型对新皮质场电位活动的贡献。 为了进行神经跨膜电压动态的细胞类型特异性记录,我们将在一系列不同的转基因小鼠品系中表达红色和绿色基因编码的电压指示器,每种小鼠品系都允许在锥体神经元或中间神经元类别之一中选择性基因表达。新皮质。在进行光学记录的同时,我们将对皮质 LFP 进行传统的电记录。这些联合光学和电学测量将是同类中的首次,并将对每种神经元类型如何影响自发和刺激诱发的皮质场电位活动产生重要的见解。 在我们收集的小鼠品系中,我们将进行 3 种新颖类型的记录,每种记录都使用尖端仪器,在清醒行为小鼠中同时对多达 2 种细胞类型进行光学电压成像:a) 光纤电压-传感,用于跟踪基因定义的神经群体的电压动态; b) 特定细胞类型中皮层电压振荡和波的宽场电压成像; c) 一次最多 2 个神经元类型的尖峰动态的高速 (1 kHz) 光学电压成像。此外,为了测试每个神经元类别在塑造皮质场电位中的因果作用,我们还将在每个小鼠品系中进行化学遗传学抑制研究。在这些研究中,我们将沉默每个神经元类型,并观察从皮质电路中有效去除该细胞类型如何影响 LFP 活动和其他神经元类别的群体电压动态。 总之,这些开创性的研究将通过提供不同细胞类型如何塑造场电位动态的基本见解,推动对基础和应用神经科学中皮层场电位的理解。为了帮助确保我们的实验以最佳方式推进该领域的概念理解,我们的团队包括 2 名计算神经科学家,他们的专业知识是对皮质场电位的生物物理学进行建模。为了促进透明度和开放科学,我们将把实验中的所有广泛数据集和分析存放到公共存储库中。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MARK J SCHNITZER其他文献

MARK J SCHNITZER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MARK J SCHNITZER', 18)}}的其他基金

A robotic multi-armed two-photon microscope for imaging neural interactions across multiple brain areas
机器人多臂双光子显微镜,用于对多个大脑区域的神经相互作用进行成像
  • 批准号:
    10675439
  • 财政年份:
    2022
  • 资助金额:
    $ 198.29万
  • 项目类别:
A robotic multi-armed two-photon microscope for imaging neural interactions across multiple brain areas
机器人多臂双光子显微镜,用于对多个大脑区域的神经相互作用进行成像
  • 批准号:
    10401607
  • 财政年份:
    2022
  • 资助金额:
    $ 198.29万
  • 项目类别:
Multi-color optical voltage imaging of neural activity in behaving animals
行为动物神经活动的多色光学电压成像
  • 批准号:
    10415945
  • 财政年份:
    2021
  • 资助金额:
    $ 198.29万
  • 项目类别:
A comprehensive dissection of cell types, circuits and molecular adaptations during opioid use
对阿片类药物使用过程中的细胞类型、回路和分子适应的全面剖析
  • 批准号:
    10410556
  • 财政年份:
    2021
  • 资助金额:
    $ 198.29万
  • 项目类别:
Multi-color optical voltage imaging of neural activity in behaving animals
行为动物神经活动的多色光学电压成像
  • 批准号:
    10166236
  • 财政年份:
    2021
  • 资助金额:
    $ 198.29万
  • 项目类别:
A comprehensive dissection of cell types, circuits and molecular adaptations during opioid use
对阿片类药物使用过程中的细胞类型、回路和分子适应的全面剖析
  • 批准号:
    10302852
  • 财政年份:
    2021
  • 资助金额:
    $ 198.29万
  • 项目类别:
A comprehensive dissection of cell types, circuits and molecular adaptations during opioid use
对阿片类药物使用过程中的细胞类型、回路和分子适应的全面剖析
  • 批准号:
    10598151
  • 财政年份:
    2021
  • 资助金额:
    $ 198.29万
  • 项目类别:
Routing of SPW-R content via distinct hippocampal output pathways
通过不同的海马输出途径进行 SPW-R 内容的路由
  • 批准号:
    10202754
  • 财政年份:
    2017
  • 资助金额:
    $ 198.29万
  • 项目类别:
Large-scale dual-color two-photon calcium imaging in awake behaving animals
清醒行为动物的大规模双色双光子钙成像
  • 批准号:
    9788541
  • 财政年份:
    2016
  • 资助金额:
    $ 198.29万
  • 项目类别:
Large-scale dual-color two-photon calcium imaging in awake behaving animals
清醒行为动物的大规模双色双光子钙成像
  • 批准号:
    9346634
  • 财政年份:
    2016
  • 资助金额:
    $ 198.29万
  • 项目类别:

相似国自然基金

秦岭生态效益转化与区域绿色发展模式
  • 批准号:
    72349001
  • 批准年份:
    2023
  • 资助金额:
    200 万元
  • 项目类别:
    专项基金项目
我国西南地区节点城市在次区域跨国城市网络中的地位、功能和能级提升研究
  • 批准号:
    72364037
  • 批准年份:
    2023
  • 资助金额:
    28 万元
  • 项目类别:
    地区科学基金项目
农产品区域公用品牌地方政府干预机制与政策优化研究
  • 批准号:
    72373068
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
政府数据开放与资本跨区域流动:影响机理与经济后果
  • 批准号:
    72302091
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Noradrenergic gating of astrocyte calcium-mediated homeostasis in vivo
星形胶质细胞钙介导体内稳态的去甲肾上腺素能门控
  • 批准号:
    10679269
  • 财政年份:
    2023
  • 资助金额:
    $ 198.29万
  • 项目类别:
The Enteric Glia as a Possible Target for Symptom Relief in Endometriosis
肠胶质细胞作为缓解子宫内膜异位症症状的可能目标
  • 批准号:
    10625609
  • 财政年份:
    2023
  • 资助金额:
    $ 198.29万
  • 项目类别:
Investigating the role of CSF production and circulation in aging and Alzheimer's disease
研究脑脊液产生和循环在衰老和阿尔茨海默病中的作用
  • 批准号:
    10717111
  • 财政年份:
    2023
  • 资助金额:
    $ 198.29万
  • 项目类别:
Infectious history as a determinant of age-related inflammation in Alzheimers disease
感染史是阿尔茨海默病年龄相关炎症的决定因素
  • 批准号:
    10663042
  • 财政年份:
    2023
  • 资助金额:
    $ 198.29万
  • 项目类别:
Novel treatments of chronic pain due to repetitive mild traumatic brain injury
重复性轻度创伤性脑损伤引起的慢性疼痛的新疗法
  • 批准号:
    10754128
  • 财政年份:
    2023
  • 资助金额:
    $ 198.29万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了