Characterizing cognitive control networks using a precision neuroscience approach

使用精确神经科学方法表征认知控制网络

基本信息

  • 批准号:
    10398085
  • 负责人:
  • 金额:
    $ 33.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2024-03-31
  • 项目状态:
    已结题

项目摘要

Impairments in cognitive control are central to many mental health disorders (McTeague et al., 2017). In parallel, there is mounting evidence from a range of neuroimaging studies implicating impairments of network computations in disorders of mental health (Fornito et al., 2015). A crucial ‘missing piece’ bridging these two aspects of brain function is a relatively poor understanding of the way in which the network-level computations of the brain relate to cognitive control processes, and the precise ways in which these relationships fluctuate and unfold over weeks and months in each individual. Before we can understand fluctuations in the trajectories of mental illnesses, we need to first understand the temporal variability of healthy individuals over time. “Recent ‘dense-scanning’ datasets that acquire substantially more data per subject provide a potential solution to this challenge, but these studies have lacked width (they include few subjects, e.g., 4-10) and breadth (they focus on individual tasks/states, often the ‘resting state’). We will overcome these shortcoming with a dataset scanning 55 subjects each for a total 12 hours over the course of 6 months on 8 unique tasks that span multiple constructs of cognitive control (working memory, attention, set shifting, inhibition, and performance monitoring). The resultant dataset will be wide (i.e. multiple subjects per task), broad (e.g. multiple tasks per construct) and deep (e.g. multiple repetitions of each task over time). This precision neuroscience approach allows us to identify global and local changes in neural networks that are necessary both (a) in preparation for fast, effective controlled performance, and (b) to support flexible post-error and post-conflict control adjustments to improve subsequent performance. Once we have identified these behavioral and neural network signatures of cognitive control that are reproducible across task, construct, session, we will leverage this information in a novel ‘targeted network attack’ procedure to engineer breakdowns in the network architecture by precision challenges to the cognitive system. Tailored combinations of tasks that rely on overlapping network architectures will be combined to identify specific network features that are ripe for failure in healthy subjects, and as such, represent likely nodes for subsequent failure in disease. Together, this work will uncover novel links between cognitive control and functional brain network architecture across tasks, constructs, and sessions (Aim 1) that are essential for effective and flexible behavior (Aim 2) and are likely to fail across diverse disease states (Aim 3). Our precision neuroscience approach relates closely to the precision medicine initiative at the NIH, as our deep-scanning procedure allows us to identify subject-level network features necessary for effective cognitive control. In addition, by making the data openly accessible to other researchers, we expect these data sets will become an incomparably rich source of information for those studying the essential link between cognitive control and network-level computations.
认知控制受损是许多精神健康障碍的核心(McTeague 等,2017)。 与此同时,一系列神经影像学研究中越来越多的证据表明网络受损 心理健康障碍的计算(Fornito 等人,2015)连接这两者的关键“缺失部分”。 对大脑功能方面的了解相对较少 大脑的变化与认知控制过程有关,以及这些关系波动的精确方式 并在每个人身上展开数周和数月。 在我们了解精神疾病轨迹的波动之前,我们需要首先了解 “最近的‘密集扫描’数据集获得了 每个受试者更多的数据为这一挑战提供了潜在的解决方案,但这些研究缺乏 宽度(它们包括很少的主题,例如 4-10)和广度(它们关注单个任务/状态,通常是 我们将通过扫描 55 个受试者的数据集(总共 12 个受试者)来克服这些缺点。 在 6 个月的时间里完成 8 项独特的任务,涵盖多种认知控制结构 (工作记忆、注意力、设定转换、抑制和表现监控)。 广泛(即每个任务有多个主题)、广泛(例如每个结构有多个任务)和深度(例如多个 随着时间的推移重复每个任务)。这种精确的神经科学方法使我们能够识别全局和局部。 神经网络的变化对于(a)为快速、有效的受控性能做准备, (b) 支持灵活的错误后和冲突后控制调整,以改进随后的控制 一旦我们确定了认知控制的这些行为和神经网络特征, 可以在任务、构造、会话中重现,我们将在一个新颖的“目标网络”中利用这些信息 攻击”程序通过对认知的精确挑战来设计网络架构中的故障 依赖于重叠网络架构的定制任务组合将被组合起来 识别健康受试者中容易失败的特定网络特征,因此,代表可能的 随后疾病失败的节点。 这项工作将共同揭示认知控制和功能性大脑网络之间的新联系 跨任务、构造和会话(目标 1)的架构,这对于有效和灵活的行为至关重要 (目标 2)并且可能会在不同的疾病状态下失败(目标 3)。 与 NIH 的精准医学计划密切相关,因为我们的深度扫描程序使我们能够识别 此外,通过公开数据来实现有效认知控制所必需的主题级网络功能。 其他研究人员可以访问这些数据集,我们预计这些数据集将成为无比丰富的资源 为那些研究认知控制和网络级计算之间的重要联系的人提供信息。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Severe violations of independence in response inhibition tasks.
  • DOI:
    10.1126/sciadv.abf4355
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    Bissett PG;Jones HM;Poldrack RA;Logan GD
  • 通讯作者:
    Logan GD
A multi-sample evaluation of the measurement structure and function of the modified monetary incentive delay task in adolescents.
  • DOI:
    10.1016/j.dcn.2023.101337
  • 发表时间:
    2024-02
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Demidenko, Michael I.;Mumford, Jeanette A.;Ram, Nilam;Poldrack, Russell A.
  • 通讯作者:
    Poldrack, Russell A.
A dual-task approach to inform the taxonomy of inhibition-related processes.
一种双任务方法,用于告知抑制相关过程的分类。
Open exploration.
开放探索。
  • DOI:
    10.7554/elife.52157
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Thompson,WilliamHedley;Wright,Jessey;Bissett,PatrickG
  • 通讯作者:
    Bissett,PatrickG
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Russell A Poldrack其他文献

Russell A Poldrack的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Russell A Poldrack', 18)}}的其他基金

Data-driven validation of cognitive RDoC dimensions using deep phenotyping
使用深度表型分析对认知 RDoC 维度进行数据驱动验证
  • 批准号:
    10686101
  • 财政年份:
    2022
  • 资助金额:
    $ 33.97万
  • 项目类别:
Data-driven validation of cognitive RDoC dimensions using deep phenotyping
使用深度表型分析对认知 RDoC 维度进行数据驱动验证
  • 批准号:
    10515980
  • 财政年份:
    2022
  • 资助金额:
    $ 33.97万
  • 项目类别:
NIPreps: integrating neuroimaging preprocessing workflows across modalities, populations, and species
NIPreps:整合跨模式、人群和物种的神经影像预处理工作流程
  • 批准号:
    10513258
  • 财政年份:
    2021
  • 资助金额:
    $ 33.97万
  • 项目类别:
Characterizing cognitive control networks using a precision neuroscience approach
使用精确神经科学方法表征认知控制网络
  • 批准号:
    9906911
  • 财政年份:
    2018
  • 资助金额:
    $ 33.97万
  • 项目类别:
OpenNeuro: An open archive for analysis and sharing of BRAIN Initiative data
OpenNeuro:用于分析和共享 BRAIN Initiative 数据的开放档案
  • 批准号:
    10365039
  • 财政年份:
    2018
  • 资助金额:
    $ 33.97万
  • 项目类别:
OpenNeuro: An open archive for analysis and sharing of BRAIN Initiative data
OpenNeuro:用于分析和共享 BRAIN Initiative 数据的开放档案
  • 批准号:
    10417031
  • 财政年份:
    2018
  • 资助金额:
    $ 33.97万
  • 项目类别:
OpenNeuro: An open archive for analysis and sharing of BRAIN Initiative data
OpenNeuro:用于分析和共享 BRAIN Initiative 数据的开放档案
  • 批准号:
    10451257
  • 财政年份:
    2018
  • 资助金额:
    $ 33.97万
  • 项目类别:
BIDS-Derivatives: A data standard for derived data and models in the BRAIN Initiative
BIDS-Derivatives:BRAIN Initiative 中派生数据和模型的数据标准
  • 批准号:
    9411944
  • 财政年份:
    2017
  • 资助金额:
    $ 33.97万
  • 项目类别:
The development of neural responses to punishment in adolescence
青春期对惩罚的神经反应的发展
  • 批准号:
    8662735
  • 财政年份:
    2013
  • 资助金额:
    $ 33.97万
  • 项目类别:
The development of neural responses to punishment in adolescence
青春期对惩罚的神经反应的发展
  • 批准号:
    8699087
  • 财政年份:
    2013
  • 资助金额:
    $ 33.97万
  • 项目类别:

相似国自然基金

职场网络闲逛行为的作用结果及其反馈效应——基于行为者和观察者视角的整合研究
  • 批准号:
    72302108
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
摇摆桥梁三维动力学行为及地震响应规律研究
  • 批准号:
    52308494
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
胶原纤维在增龄影响骨微观尺度断裂行为和增韧机制中的作用
  • 批准号:
    12302403
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
基于共识主动性学习的城市电动汽车充电、行驶行为与交通网—配电网协同控制策略研究
  • 批准号:
    62363022
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于脑电信号多域特征和深度学习的驾驶行为识别研究
  • 批准号:
    62366028
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

The neural underpinnings of speech and nonspeech auditory processing in autism: Implications for language
自闭症患者言语和非言语听觉处理的神经基础:对语言的影响
  • 批准号:
    10827051
  • 财政年份:
    2024
  • 资助金额:
    $ 33.97万
  • 项目类别:
Effects of tACS on alcohol-induced cognitive and neurochemical deficits
tACS 对酒精引起的认知和神经化学缺陷的影响
  • 批准号:
    10825849
  • 财政年份:
    2024
  • 资助金额:
    $ 33.97万
  • 项目类别:
Naturalistic Social Communication in Autistic Females: Identification of Speech Prosody Markers
自闭症女性的自然社交沟通:语音韵律标记的识别
  • 批准号:
    10823000
  • 财政年份:
    2024
  • 资助金额:
    $ 33.97万
  • 项目类别:
Electrophysiologic characterization of circadian rhythms of prefrontal cortical network states in a diurnal rodent
昼夜啮齿动物前额皮质网络状态昼夜节律的电生理学特征
  • 批准号:
    10556475
  • 财政年份:
    2023
  • 资助金额:
    $ 33.97万
  • 项目类别:
Implementing SafeCare Kenya to Reduce Noncommunicable Disease Burden: Building Community Health Workers' Capacity to Support Parents with Young Children
实施 SafeCare Kenya 以减少非传染性疾病负担:建设社区卫生工作者支持有幼儿的父母的能力
  • 批准号:
    10672785
  • 财政年份:
    2023
  • 资助金额:
    $ 33.97万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了