Data-driven validation of cognitive RDoC dimensions using deep phenotyping
使用深度表型分析对认知 RDoC 维度进行数据驱动验证
基本信息
- 批准号:10515980
- 负责人:
- 金额:$ 78.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-19 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAnimal ExperimentationAnimalsAtlasesAttentionAutomobile DrivingBehaviorBehavioralBrainBrain imagingCognitiveCollectionComplementConsultationsDataDimensionsDiseaseEquationExperimental DesignsExposure toFactor AnalysisFunctional Magnetic Resonance ImagingFunctional disorderHumanIndividualInformal Social ControlLinkLiteratureLogicMRI ScansMapsMeasurementMeasuresMental HealthMental ProcessesMental disordersMethodsModelingMultivariate AnalysisNational Institute of Mental HealthOutcomePatient Self-ReportPerformancePhenotypePlayPsychopathologyRecording of previous eventsResearchResearch Domain CriteriaResearch PersonnelResearch Project GrantsSamplingScanningSeriesShort-Term MemorySpecific qualifier valueStructural ModelsStructureSupport SystemSurveysSystemTechniquesTestingTrainingValidationbehavior measurementbehavior testbehavioral studycognitive controlcognitive neurosciencecognitive systemcognitive taskexperiencelarge scale datamental setneural circuitneuroimagingpreventprogramspsychologicrelating to nervous systemresponsesubstance use
项目摘要
Project Summary
The NIMH research domain criteria (RDoC) reconceptualizes mental health research along a series of key
cross-disorder dimensional constructs. However, these dimensions were determined in a top-down fashion by
relatively small groups of researchers. We propose a data-driven approach that tests the validity of the key RDoC
constructs of attention, cognitive control, and working memory. We will evaluate these constructs using multiple
cognitive tasks per construct to examine their relationship to brain networks and their ability to predict real-world
behaviors that are relevant to mental health. Finally, we propose an augmentation to the RDoC framework by
adding new units of analysis: contrasts and practice.
The current RDoC matrix maps directly from task paradigms to constructs and subconstructs, which is
problematic because supposedly distinct constructs can sometimes map to exactly the same set of tasks. To
address this, we propose a new RDoC unit of analysis called a “contrast”, which better reflects the usual logic of
experimental design. We will identify mappings between cognitive systems constructs and contrasts through
consultation with domain experts. We will then acquire a large-scale dataset to test both exploratory and
confirmatory models for RDoC cognitive system constructs. Finally, we will evaluate whether these RDoC
cognitive systems constructs are predictive of related real-world outcomes.
The RDoC matrix links constructs to both behavioral measures and neural circuits, but the present mappings
between cognitive systems constructs and brain systems are sparse and inconsistent. We will use a dense-
sampling fMRI acquisition of 65 subjects each completing 10 scanning sessions on the same battery of tasks as
the behavioral study, to develop a precise data-driven atlas of neural engagement at each level of the matrix,
from contrasts to subconstructs to constructs. We will then validate the behaviorally-derived models using neural
data, both between subjects and within subjects. We will also perform fully exploratory analyses to identify
whether the data-driven neural circuit structure on these tasks diverges from the RDoC matrix.
A long history of research in both and animals has shown that repeated practice on a task changes the way
that the task is performed and the brain systems that support performance. We will leverage our behavioral and
brain imaging samples to evaluate whether the structure of the cognitive systems domain remains constant with
practice. In parallel we will also apply exploratory methods to assess the consistency of structural models
estimated either early in training or after extensive practice.
Overall, this project expands the RDoC matrix with two new units of analysis (contrasts and practice), and
validates the constructs of attention, cognitive control, and working memory across both behavior and neural
circuits.
项目概要
NIMH 研究领域标准 (RDoC) 根据一系列要点重新概念化了心理健康研究
然而,这些维度是通过自上而下的方式确定的。
我们提出了一种数据驱动的方法来测试关键 RDoC 的有效性。
我们将使用多种方法来评估这些结构。
每个结构的认知任务,以检查它们与大脑网络的关系以及它们预测现实世界的能力
最后,我们建议对 RDoC 框架进行增强。
添加新的分析单元:对比和实践。
当前的 RDoC 矩阵直接从任务范式映射到构造和子构造,即
这是有问题的,因为所谓的不同构造有时可以映射到完全相同的一组任务。
为了解决这个问题,我们提出了一个新的 RDoC 分析单元,称为“对比”,它更好地反映了通常的逻辑
我们将通过实验设计来识别认知系统构造和对比之间的映射。
然后,我们将获取大规模数据集来测试探索性和测试性。
最后,我们将评估这些 RDoC 认知系统构造的验证模型。
认知系统构造可以预测相关的现实世界结果。
RDoC 矩阵将构造链接到行为测量和神经回路,但目前的映射
认知系统结构和大脑系统之间是稀疏且不一致的。
对 65 名受试者进行 fMRI 采集采样,每名受试者完成 10 次扫描任务,并完成与
行为研究,开发一个精确的数据驱动的矩阵每个级别的神经参与图谱,
然后,我们将使用神经网络验证行为衍生模型。
我们还将进行全面的探索性分析来识别受试者之间和受试者内部的数据。
这些任务的数据驱动神经回路结构是否偏离 RDoC 矩阵。
对动物和动物的长期研究表明,对一项任务的重复练习会改变方法
我们将利用我们的行为和支持执行任务的大脑系统。
脑成像样本来评估认知系统域的结构是否保持不变
与此同时,我们还将应用探索性方法来评估结构模型的一致性。
在训练初期或广泛练习后估计。
总体而言,该项目通过两个新的分析单元(对比和实践)扩展了 RDoC 矩阵,以及
跨行为和神经验证注意力、认知控制和工作记忆的结构
电路。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Russell A Poldrack其他文献
Russell A Poldrack的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Russell A Poldrack', 18)}}的其他基金
Data-driven validation of cognitive RDoC dimensions using deep phenotyping
使用深度表型分析对认知 RDoC 维度进行数据驱动验证
- 批准号:
10686101 - 财政年份:2022
- 资助金额:
$ 78.7万 - 项目类别:
NIPreps: integrating neuroimaging preprocessing workflows across modalities, populations, and species
NIPreps:整合跨模式、人群和物种的神经影像预处理工作流程
- 批准号:
10513258 - 财政年份:2021
- 资助金额:
$ 78.7万 - 项目类别:
Characterizing cognitive control networks using a precision neuroscience approach
使用精确神经科学方法表征认知控制网络
- 批准号:
9906911 - 财政年份:2018
- 资助金额:
$ 78.7万 - 项目类别:
OpenNeuro: An open archive for analysis and sharing of BRAIN Initiative data
OpenNeuro:用于分析和共享 BRAIN Initiative 数据的开放档案
- 批准号:
10417031 - 财政年份:2018
- 资助金额:
$ 78.7万 - 项目类别:
OpenNeuro: An open archive for analysis and sharing of BRAIN Initiative data
OpenNeuro:用于分析和共享 BRAIN Initiative 数据的开放档案
- 批准号:
10365039 - 财政年份:2018
- 资助金额:
$ 78.7万 - 项目类别:
OpenNeuro: An open archive for analysis and sharing of BRAIN Initiative data
OpenNeuro:用于分析和共享 BRAIN Initiative 数据的开放档案
- 批准号:
10451257 - 财政年份:2018
- 资助金额:
$ 78.7万 - 项目类别:
Characterizing cognitive control networks using a precision neuroscience approach
使用精确神经科学方法表征认知控制网络
- 批准号:
10398085 - 财政年份:2018
- 资助金额:
$ 78.7万 - 项目类别:
BIDS-Derivatives: A data standard for derived data and models in the BRAIN Initiative
BIDS-Derivatives:BRAIN Initiative 中派生数据和模型的数据标准
- 批准号:
9411944 - 财政年份:2017
- 资助金额:
$ 78.7万 - 项目类别:
The development of neural responses to punishment in adolescence
青春期对惩罚的神经反应的发展
- 批准号:
8662735 - 财政年份:2013
- 资助金额:
$ 78.7万 - 项目类别:
The development of neural responses to punishment in adolescence
青春期对惩罚的神经反应的发展
- 批准号:
8507396 - 财政年份:2013
- 资助金额:
$ 78.7万 - 项目类别:
相似国自然基金
地表与大气层顶短波辐射多分量一体化遥感反演算法研究
- 批准号:42371342
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
高速铁路柔性列车运行图集成优化模型及对偶分解算法
- 批准号:72361020
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
随机密度泛函理论的算法设计和分析
- 批准号:12371431
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于全息交通数据的高速公路大型货车运行风险识别算法及主动干预方法研究
- 批准号:52372329
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
强磁场作用下两相铁磁流体动力学相场模型的高精度数值算法研究
- 批准号:12361074
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
相似海外基金
Interaction of Motor Learning with Transcranial Direct Current - Efficacy and Mechanisms
运动学习与经颅直流电的相互作用 - 功效和机制
- 批准号:
10577313 - 财政年份:2022
- 资助金额:
$ 78.7万 - 项目类别:
Data-driven validation of cognitive RDoC dimensions using deep phenotyping
使用深度表型分析对认知 RDoC 维度进行数据驱动验证
- 批准号:
10686101 - 财政年份:2022
- 资助金额:
$ 78.7万 - 项目类别:
Functional Assessment of Variants in Organisms of Research (FAVOR) - Profiling Canonical Human Genes and their Variants through Disease Model Phenotyping.
研究有机体变异的功能评估 (FAVOR) - 通过疾病模型表型分析典型人类基因及其变异。
- 批准号:
10011229 - 财政年份:2020
- 资助金额:
$ 78.7万 - 项目类别: