Hierarchical statistical modeling and causal inference approaches to elucidate exposure pathways underlying health disparities
分层统计模型和因果推理方法阐明健康差异背后的暴露途径
基本信息
- 批准号:10218051
- 负责人:
- 金额:$ 16.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:Air PollutantsAmericanAsthmaBayesian MethodBehaviorBehavioralBiologicalCause of DeathChemical ExposureCheyenneChronicChronic DiseaseCommunitiesCommunity HealthComplexCrowsDataData SetDatabasesDevelopmentDiabetes MellitusDietDiseaseEnsureEnvironmental ExposureEnvironmental HazardsEnvironmental HealthEnvironmental PollutionExposure toFrequenciesFutureGeneral PopulationGenetic Predisposition to DiseaseGeologyHealthHypertensionIncidenceIndividualInfectious AgentInfrastructureInterventionIntervention StudiesKidney DiseasesKnowledgeLife StyleMachine LearningMalignant NeoplasmsMalignant neoplasm of liverManuscriptsMediationMetal exposureMetalsMiningModelingNational Cancer InstituteNational Health and Nutrition Examination SurveyNative AmericansNavajoNot Hispanic or LatinoNutrientObesityOutcomePathway AnalysisPathway interactionsPhysical activityPlayPopulationPreparationPrevalencePsychosocial StressPublic HealthRenal carcinomaReportingResearchResearch Project GrantsResource AllocationResourcesRiskRisk FactorsRiversRoleSioux IndiansSocioeconomic StatusSolid Waste DisposalsSourceStatistical Data InterpretationStatistical MethodsStatistical ModelsStructureTechniquesUraniumWarWatercancer typecausal modelcold temperaturecost effectivedata managementdata qualitydata reusedietarydisparity reductionexposure pathwayfrontierhealth disparityhealth equityhigh riskimprovedinnovationlarge datasetslifestyle factorsmalignant stomach neoplasmmembermodifiable risknovelresponsesocialsocial determinantssociodemographicssocioeconomicsstatisticsstressortribal communitytribal landswasting
项目摘要
Summary
RP3 Hierarchical statistical modeling and causal inference approaches to elucidate exposure
pathways underlying health disparities
The health disparity between the Native American population and the US general population arises from the
complex interplay between multiple socio-demographic, behavior, lifestyle and genetic susceptibility factors.
Environmental contaminants are increasingly acknowledged to play an important part in explaining health
disparity through their combined or interaction effects with other factors. Proximities of Native American
communities to abandoned uranium mines (AUM) have been of particular health concern. These chronic
exposures to AUM waste related metal mixtures pose higher risk for developing chronic and fatal diseases
including hypertension, diabetes, kidney disease, and types of cancer in Native American populations
compared to the US population. The hypothesis of this project is that the three Native American tribal
communities included in this study (Navajo Nation, Crow, and Cheyenne River Sioux) encounter great risk of
exposures to environmental hazards (mine waste related metal mixture exposures, unregulated water
resources, and illegal dumping, etc.). These hazardous exposures along with socioeconomic status,
psychosocial stress, behavior/lifestyle factors influence multiple biological pathways to produce health
disparities in Native American communities. The complex set of exposure variables including dietary nutrients,
physical activity, infectious agents, air pollutants and metal exposures at both the individual and community
levels are acknowledged as contributors to health disparities, however, their relative contributions of the
potential causal factors have not been well studied. The objective of this project is to employ data-driven and
modeling approaches to understand the relative contribution of different environmental, behavior, and
socioeconomic determinants of the health disparities between the native population and the US national
population. We will use innovative modeling approaches such as decomposition analyses and structural
causal models to estimate the effects of risk factors at the individual and community level on the health
disparities. In Aim 1, we will collect data and summarize the frequency distributions for major chronic and fatal
diseases in the Native American communities. In Aim 2, we will employ novel hierarchical modeling
approaches to estimate the relative contribution of different risk factors at the individual level and community
level to the health disparities. In Aim 3, we will implement frontier causal pathway analyses to illustrate the
intermediate mechanisms explaining the health disparity. Aim 4 is to examine the complex correlation structure
among multi-dimensional exposures, intermediate biological responses, and health endpoints using frontier
statistical approaches. We expect this project will identify major contributing factors that explain a large
proportion of the health disparity, and in addition elucidate the intermediate causal pathway that the effects are
transmitted to the health disparity endpoints. These findings have the potential to inform policymaking on the
cost-effective resource allocation to maximally reduce disparity and improve community health.
概括
RP3 阐明暴露情况的分层统计模型和因果推理方法
健康差异的潜在途径
美洲原住民人口与美国普通人口之间的健康差距源于
多种社会人口、行为、生活方式和遗传易感性因素之间复杂的相互作用。
人们越来越认识到环境污染物在解释健康方面发挥着重要作用
差异是通过它们与其他因素的组合或相互作用而产生的。接近美洲原住民
废弃铀矿 (AUM) 社区的健康尤其令人担忧。这些慢性
接触 AUM 废物相关金属混合物会增加患慢性和致命疾病的风险
包括美洲原住民人群中的高血压、糖尿病、肾病和癌症类型
与美国人口相比。该项目的假设是三个美洲原住民部落
本研究中包含的社区(纳瓦霍族、克罗族和夏延河苏族)面临着巨大的风险
暴露于环境危害(与矿山废物相关的金属混合物暴露、不受管制的水
资源、非法倾倒等)。这些危险暴露以及社会经济地位,
社会心理压力、行为/生活方式因素影响产生健康的多种生物途径
美洲原住民社区的差异。一系列复杂的暴露变量,包括膳食营养素、
个人和社区的体力活动、传染源、空气污染物和金属暴露
公认的水平是造成健康差异的因素,但是,它们对健康差异的相对贡献
潜在的致病因素尚未得到充分研究。该项目的目标是采用数据驱动和
建模方法来了解不同环境、行为和行为的相对贡献
本地人口与美国国民之间健康差异的社会经济决定因素
人口。我们将使用创新的建模方法,例如分解分析和结构分析
因果模型估计个人和社区层面的风险因素对健康的影响
差异。在目标 1 中,我们将收集数据并总结主要慢性病和致命病的频率分布
美洲原住民社区的疾病。在目标 2 中,我们将采用新颖的分层建模
估计不同风险因素在个人和社区层面的相对贡献的方法
水平的健康差异。在目标 3 中,我们将实施前沿因果路径分析来说明
解释健康差异的中间机制。目标 4 是检查复杂的相关结构
使用前沿在多维暴露、中间生物反应和健康终点之间进行评估
统计方法。我们预计该项目将确定解释重大问题的主要影响因素
健康差异的比例,此外还阐明了影响的中间因果路径
传输到健康差异端点。这些发现有可能为政策制定提供信息
具有成本效益的资源分配,以最大限度地减少差距并改善社区健康。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Li Luo其他文献
Li Luo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Li Luo', 18)}}的其他基金
Hierarchical statistical modeling and causal inference approaches to elucidate exposure pathways underlying health disparities
分层统计模型和因果推理方法阐明健康差异背后的暴露途径
- 批准号:
10372187 - 财政年份:2015
- 资助金额:
$ 16.23万 - 项目类别:
Hierarchical statistical modeling and causal inference approaches to elucidate exposure pathways underlying health disparities
分层统计模型和因果推理方法阐明健康差异背后的暴露途径
- 批准号:
10062404 - 财政年份:2015
- 资助金额:
$ 16.23万 - 项目类别:
Hierarchical statistical modeling and causal inference approaches to elucidate exposure pathways underlying health disparities
分层统计模型和因果推理方法阐明健康差异背后的暴露途径
- 批准号:
10589163 - 财政年份:2015
- 资助金额:
$ 16.23万 - 项目类别:
相似海外基金
EXposomic Profiling in Airway disease to uNravel Determinants of disease in Asthma (EXPAND-Asthma) Center
气道疾病暴露组分析以解开哮喘疾病的决定因素 (EXPAND-Asthma) 中心
- 批准号:
10744673 - 财政年份:2023
- 资助金额:
$ 16.23万 - 项目类别:
A Low-Cost Wearable Connected Health Device for Monitoring Environmental Pollution Triggers of Asthma in Communities with Health Disparities
一种低成本可穿戴互联健康设备,用于监测健康差异社区中哮喘的环境污染诱因
- 批准号:
10601615 - 财政年份:2023
- 资助金额:
$ 16.23万 - 项目类别:
Predicting Exacerbations of Asthma in Real-World Patients with Low Medical Utilization (PEARL)
预测现实世界中医疗利用率低的患者的哮喘恶化 (PEARL)
- 批准号:
10585179 - 财政年份:2023
- 资助金额:
$ 16.23万 - 项目类别:
Impact of BTEX Chemical Exposure During Pregnancy to Maternal and Fetal Well-Being
怀孕期间接触 BTEX 化学品对母亲和胎儿健康的影响
- 批准号:
10352965 - 财政年份:2022
- 资助金额:
$ 16.23万 - 项目类别:
Impact of BTEX Chemical Exposure During Pregnancy to Maternal and Fetal Well-Being
怀孕期间接触 BTEX 化学品对母亲和胎儿健康的影响
- 批准号:
10700806 - 财政年份:2022
- 资助金额:
$ 16.23万 - 项目类别: