Steerable Robotic Endoscopic Tools for Pediatric Neurosurgery
用于小儿神经外科的可操纵机器人内窥镜工具
基本信息
- 批准号:10217219
- 负责人:
- 金额:$ 21.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAnatomyAnesthesia proceduresArachnoid materArticulationBiopsyBlood VesselsBrainBrain DiseasesBrain NeoplasmsCadaverCaliberCephalicCerebellumChild health careChildhoodClinicalComplexCranial NervesCystDevelopmentDiseaseDissectionDistalElectrocoagulationEndoscopesEngineeringForcepGeometryGoalsHandHeadHealth ExpendituresHospitalizationHumanHydrocephalusImageInfection ControlLaparoscopic Surgical ProceduresLasersLiftingLightMagnetic Resonance ImagingMedicalMethodsModelingMotionMovementNeuroendoscopyNeurosurgeonNeurosurgical ProceduresOperative Surgical ProceduresPathologyPatientsPediatric HospitalsPopulationPrintingProceduresResearchRoboticsShapesSourceSpinal CordSpine surgerySurfaceSurgeonSurgical SpecialtiesSystemTechniquesTestingTrainingVentricularWorkbrain parenchymaclinically relevantdesignflexibilityforce feedbackimprovedinnovationinstrumentinstrumentationinterestminimally invasiveneurosurgerynotch proteinpediatric patientsphantom modelrobot assistancetooltumorundergraduate studenturologic
项目摘要
For much of the 20th century, advancements in anesthesia and infection control allowed surgeons to be
maximally invasive; as a result, all surgical specialties advanced leaps and bounds. Starting towards the end of
the last century, one started to question whether the same clinical results could be achieved through minimally
invasive methods, which led to the development of laparoscopic surgery and other types of minimally invasive
surgery (MIS). The applications of MIS in the cranial space (endoscopic neurosurgeries) pose unique problems
such as: a) the need to minimize the number of transgressions through the brain parenchyma because any
movements of the instruments that transgress the brain parenchyma would result in collateral damage, b) lack
of large surgical spaces, and c) restricted access for the assistant. These restrictions are accentuated in the
pediatric population, yet one may convincingly argue that these pediatric patients stand to benefit the most from
the MIS methods. Current steerable endoscopic tools, in commercial and research, are not less than 2mm in
diameter and lack bimanual triangulation capabilities. A breakthrough in instrumentation design will
undoubtedly increase the ability of surgeons to treat complex diseases via endoscopic surgeries. Thus, the overall
goal of this project is to design, develop, and evaluate modular, steerable, and flexible robotic endoscopic tools
with high fidelity force feedback and intrinsic shape sensing capability that can be introduced through a two-
channel MINOP endoscope (commonly used in neurosurgery) and to improve the current work-flow in the
operating theater. We will thus address two specific aims in this project:
Sp. Aim 1 (Georgia Tech): Develop hand-held, modular, steerable robotic endoscopic tools with in-line high
fidelity force feedback and intrinsic shape sensing capability, that are easily interchangeable during endoscopic
surgery. Through laser and other micromachining/finishing techniques, high quality features of different shapes
(notches) and sizes (10-100 microns) at the distal end of endoscopic tools to achieve steerability, will be realized.
Sp. Aim 2 (CHOA + Georgia Tech): Realistic 3D Phantom Model and Human Cadaver Testing - A)
Evaluate the steerability and reach of the tools in a clinically relevant realistic 3D phantom model: We will use
3-D printing to create various models of the brain depicting the geometry and anatomic details of both healthy
and diseased brains; B) Evaluate the functionalities of the tool tips: we will test the actions and responsiveness
of our instruments and designs through cranial nerve and blood vessel dissections in cadaveric heads.
This highly innovative and interdisciplinary project combines expertise in surgical robotics (Desai - BME,
Georgia Tech), micromachining (Melkote - ME, Georgia Tech), and neurosurgery (Chern - Children's Healthcare
of Atlanta (CHOA)) to develop steerable endoscopic tools for neurosurgery. Technological advancements in this
project will significantly enhance the surgeon's ability to treat complex cranial diseases via endoscopic surgery.
在 20 世纪的大部分时间里,麻醉和感染控制的进步使外科医生能够
最大程度地侵入;结果,所有外科专业都取得了长足的进步。接近尾声时开始
上个世纪,人们开始质疑是否可以通过最低限度的治疗来获得相同的临床结果
侵入性方法,导致腹腔镜手术和其他类型的微创手术的发展
手术(MIS)。 MIS 在颅腔(内窥镜神经外科)中的应用带来了独特的问题
例如:a)需要尽量减少通过脑实质的越界次数,因为任何
超出脑实质的仪器运动会导致附带损害,b)缺乏
大型手术空间,以及 c) 限制助手的进入。这些限制在
儿科人群,但人们可能会令人信服地争辩说,这些儿科患者将从中受益最多
管理信息系统方法。目前商业和研究中的可操纵内窥镜工具的直径不小于 2mm
直径并且缺乏双手三角测量功能。仪器设计的突破将
无疑提高了外科医生通过内窥镜手术治疗复杂疾病的能力。因此,总体
该项目的目标是设计、开发和评估模块化、可操纵和灵活的机器人内窥镜工具
具有高保真力反馈和固有的形状传感能力,可以通过两个
通道 MINOP 内窥镜(常用于神经外科)并改进当前的工作流程
手术室。因此,我们将在该项目中实现两个具体目标:
Sp。目标 1(佐治亚理工学院):开发手持式、模块化、可操纵的机器人内窥镜工具,具有在线高
保真度力反馈和固有形状传感能力,在内窥镜检查过程中可以轻松互换
外科手术。通过激光和其他微加工/精加工技术,不同形状的高质量特征
在内窥镜工具远端实现可操纵性的(凹口)和尺寸(10-100微米)将得以实现。
Sp。目标 2(CHOA + 佐治亚理工学院):逼真的 3D 体模模型和人体尸体测试 - A)
在临床相关的真实 3D 模型中评估工具的可操纵性和范围:我们将使用
3D 打印可创建各种大脑模型,描绘健康人的几何形状和解剖细节
和患病的大脑; B)评估工具提示的功能:我们将测试操作和响应能力
通过尸体头部的脑神经和血管解剖来了解我们的仪器和设计。
这个高度创新和跨学科的项目结合了手术机器人技术的专业知识(Desai - BME,
佐治亚理工学院)、微机械加工(Melkote - ME,佐治亚理工学院)和神经外科(陈省身 - 儿童保健
亚特兰大(CHOA))开发用于神经外科的可操纵内窥镜工具。这方面的技术进步
该项目将显着提高外科医生通过内窥镜手术治疗复杂颅脑疾病的能力。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JAYDEV P. DESAI其他文献
JAYDEV P. DESAI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JAYDEV P. DESAI', 18)}}的其他基金
Steerable Robotic Endoscopic Tools for Pediatric Neurosurgery
用于小儿神经外科的可操纵机器人内窥镜工具
- 批准号:
10063219 - 财政年份:2020
- 资助金额:
$ 21.82万 - 项目类别:
Ultrasound-guided, Robotically Steerable Guidewire for Endovascular Interventions
用于血管内介入治疗的超声引导机器人可操纵导丝
- 批准号:
9914884 - 财政年份:2019
- 资助金额:
$ 21.82万 - 项目类别:
Ultrasound-guided, Robotically Steerable Guidewire for Endovascular Interventions
用于血管内介入治疗的超声引导机器人可操纵导丝
- 批准号:
10155555 - 财政年份:2019
- 资助金额:
$ 21.82万 - 项目类别:
Ultrasound-guided, Robotically Steerable Guidewire for Endovascular Interventions
用于血管内介入治疗的超声引导机器人可操纵导丝
- 批准号:
10392386 - 财政年份:2019
- 资助金额:
$ 21.82万 - 项目类别:
Image-guided Intravascular Robotic System for Mitral Valve Repair and Implants
用于二尖瓣修复和植入的图像引导血管内机器人系统
- 批准号:
10117090 - 财政年份:2018
- 资助金额:
$ 21.82万 - 项目类别:
Identification of AF Ablation Targets via a Steerable Actuated Catheter(AFIB)
通过可操纵驱动导管 (AFIB) 识别 AF 消融目标
- 批准号:
9327633 - 财政年份:2015
- 资助金额:
$ 21.82万 - 项目类别:
Identification of AF Ablation Targets via a Steerable Actuated Catheter
通过可操纵驱动导管识别 AF 消融目标
- 批准号:
8893523 - 财政年份:2015
- 资助金额:
$ 21.82万 - 项目类别:
Neurosurgical Intracerebral Hemorrhage Evacuation (NICHE) Robot
神经外科脑出血清除(NICHE)机器人
- 批准号:
9327628 - 财政年份:2014
- 资助金额:
$ 21.82万 - 项目类别:
Neurosurgical Intracerebral Hemorrhage Evacuation (NICHE) Robot
神经外科脑出血清除(NICHE)机器人
- 批准号:
8853860 - 财政年份:2014
- 资助金额:
$ 21.82万 - 项目类别:
Neurosurgical Intracerebral Hemorrhage Evacuation (NICHE) Robot
神经外科脑出血清除(NICHE)机器人
- 批准号:
8684084 - 财政年份:2014
- 资助金额:
$ 21.82万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 21.82万 - 项目类别:
Project 2: Ex Vivo Modeling and Analysis of Gastric Precancerous Lesions
项目2:胃癌前病变的离体建模与分析
- 批准号:
10715763 - 财政年份:2023
- 资助金额:
$ 21.82万 - 项目类别:
Morphologic and Kinematic Adaptations of the Subtalar Joint after Ankle Fusion Surgery in Patients with Varus-type Ankle Osteoarthritis
内翻型踝骨关节炎患者踝关节融合手术后距下关节的形态和运动学适应
- 批准号:
10725811 - 财政年份:2023
- 资助金额:
$ 21.82万 - 项目类别:
Computer-Aided Triage of Body CT Scans with Deep Learning
利用深度学习对身体 CT 扫描进行计算机辅助分类
- 批准号:
10585553 - 财政年份:2023
- 资助金额:
$ 21.82万 - 项目类别:
In vivo Perturb-map: scalable genetic screens with single-cell and spatial resolution in intact tissues
体内扰动图:在完整组织中具有单细胞和空间分辨率的可扩展遗传筛选
- 批准号:
10578616 - 财政年份:2023
- 资助金额:
$ 21.82万 - 项目类别: