Ultrasound-guided, Robotically Steerable Guidewire for Endovascular Interventions
用于血管内介入治疗的超声引导机器人可操纵导丝
基本信息
- 批准号:10392386
- 负责人:
- 金额:$ 67.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-15 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D PrintAddressAdoptedAdultAlgorithmsAmericanAnimal ModelAnimal TestingAnimalsAtherosclerosisBlood VesselsBypassCadaverCalciumCaliberCardiologyCessation of lifeChronicChronic DiseaseClinicalCollagenCommunitiesConsumptionCustomDepositionDevicesDistalElementsExposure toFailureFeedbackFibrinFluoroscopyFreedomGoalsHealth Care CostsHeart failureHumanImageInjuryInterventionInterventional radiologyIschemiaLateralLeadLengthLesionLettersLimb structureMapsMechanicsMedicalModelingMotionOperative Surgical ProceduresOral cavityOrganPatient-Focused OutcomesPatientsPhysiciansProceduresPropertyPulsatile FlowRadiationRadiation exposureRiskRoboticsRunningSideStentsStrokeStructureSurfaceSystemTendon structureTestingTimeTissuesTransducersTreatment outcomeUltrasonic TransducerUltrasonographycalcificationclinically translatablecostdesignflexibilityhazardhealingimage guidedimage guided interventionimprovedinnovationlimb amputationnew technologynotch proteinnoveloral lesionprototypereal-time imagesrobotic systemspine bone structuresuccessultrasoundvibration
项目摘要
The burden of atherosclerotic vascular disease is immense among adult Americans, contributing to about
800,000 deaths per year. Chronic total occlusions (CTO) are the riskiest, most challenging, and least successful
of these vascular lesions to treat with traditional stenting or endovascular devices. Procedural complexity and
failure with CTO's are attributed to the lesion structure, which includes a fibrous calcific plaque on the proximal
entry side of the lesion, and an irregular micro-lumen spanning its length. Passing a guidewire across this lesion
is challenging, as the lateral view provided by 2D fluoroscopic imaging does not directly identify the
“mouth”/entry to the lumen. The flexible tips of the guidewires bend due to multiple-impacts with stiff lesions,
increasing the technical challenge with each additional attempt. Even successful procedures are time-consuming,
involve chance, require prolonged patient and physician exposure to radiation and use excessive amounts of
contrast. This clinical challenge is well recognized in the community. Breaking the calcium with mechanical
vibrations or drilling was adopted by several, but the need for a large bore tip to house such mechanical
components makes it applicable only in larger vessels. In addition, the debris resulting from such an approach
carries the risk of ischemia or stroke in the distal organs. Since endovascular approaches are increasingly utilized
over surgical bypass of CTO's, there is an urgent need to develop new technologies to meet this critical need!
Thus, the overall goal of this project is to develop a novel steerable guidewire with a miniature forward-
viewing ultrasound (US) transducer to enable real-time image-guided CTO traversal. We will address three
specific aims – Sp. Aim 1: Design and develop a robotically steerable, 0.014” diameter guidewire (0.355 mm)
system that can accommodate a .350 mm x .350 mm US transducer at its tip and can be steered with image
feedback from the transducer. Sp. Aim 2: Design and build a forward-looking transducer for the robotically
steerable guidewire and an algorithm to reconstruct an image of the encountered occlusion. Sp. Aim 3: To
iteratively optimize the US-steerable guidewire design using 3D printed patient-specific models of CTO's,
realistic human cadaver limbs with CTO, and a live animal model of CTO's. This project is innovative on several
fronts. It represents the first use of intravascular steerable robotic guidewire capable of forward looking US
imaging and image-guided navigation through vasculature and occluded vessels. The ability to steer, visualize
and navigate the guidewire is highly novel and will eventually result in improvement of clinical workflow and
patient treatment outcomes. This highly interdisciplinary project combines expertise in medical robotics, US
imaging, pulsatile flow models and image-guided interventions in animal models, interventional cardiology, and
interventional radiology. The US-guided, intravascular steerable robotic system will have significant societal
impact through improved patient outcomes, reduced radiation exposure for the physician and the patient,
reduced rate of procedural failures, and lower healthcare costs.
成年美国人的动脉粥样硬化血管疾病的伯宁巨大
每年800,000人死亡。慢性全部阻塞(CTO)是最风险,最挑战,最不成功的
在这些血管病变中,可以用传统的支架或血管内装置治疗。程序复杂性和
CTO失败归因于病变结构,该病变结构包括近端的纤维钙化斑块
病变的入口侧,不规则的微隆横向其长度。通过该病变经过导丝
是挑战,因为2D荧光影像成像提供的横向视图并未直接识别
“嘴”/进入管腔。指南的灵活尖端由于多重损伤而弯曲,
每次尝试增加技术挑战。即使成功的程序也很耗时,
涉及机会,需要长时间的患者和身体暴露于辐射,并使用过多的
对比。这种临床挑战在社区中得到了广泛认可。用机械打破钙
几个人采用了振动或钻孔,但是需要大钻头来容纳这种机械
组件使其仅适用于较大的视频。另外,通过这种方法产生的碎屑
远端器官有缺血或中风的风险。由于血管内方法越来越多地使用
通过外科手术的CTO旁路,迫切需要开发新技术以满足这种关键需求!
这是这个项目的总体目标是用微型前锋开发一个新颖的可训练导丝。
查看超声(US)换能器以实现实时图像引导的CTO遍历。我们将解决三个
特定目的 - sp。 AIM 1:设计和开发一个机器人可通道的,直径为0.014英寸的指南(0.355 mm)
可以容纳.350毫米x .350毫米美国传感器的系统,并且可以用图像蒸
传感器的反馈。 sp。 AIM 2:为机器人设计并构建一个前瞻性传感器
可通话的导线和一种算法,以重建遇到的遮挡图像。 sp。目标3:到
使用3D打印的CTO特定于患者的模型,以迭代性优化美国驱动的指南设计
现实的人类尸体与CTO和CTO的现场动物模型。这个项目在几个方面具有创新性
正面。它代表了血管内通话的机器人指南的首次使用,能够向前寻找我们
成像和图像引导通过脉管系统和阻塞血管的导航。转向,可视化的能力
并且导航导线是高度新颖的,最终将改善临床工作流程和
患者治疗结果。这个高度跨学科的项目结合了美国医学机器人技术的专业知识,美国
动物模型中的成像,脉动流量模型和图像引导的干预措施,介入心脏病学和
介入放射学。美国引导的,血管内可探可的机器人系统将具有重要的社交
通过改善患者预后的影响,身体和患者的辐射暴露减少,
降低了程序失败的速度和降低医疗保健成本。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High contrast power Doppler imaging in side-viewing intravascular ultrasound imaging via angular compounding.
- DOI:10.1016/j.ultras.2020.106200
- 发表时间:2020-12
- 期刊:
- 影响因子:4.2
- 作者:Collins GC;Jing B;Lindsey BD
- 通讯作者:Lindsey BD
Simultaneous Shape and Tip Force Sensing for the COAST Guidewire Robot.
COAST Guidewire 机器人的同时形状和尖端力传感。
- DOI:10.1109/lra.2023.3267008
- 发表时间:2023
- 期刊:
- 影响因子:5.2
- 作者:Deaton,NancyJ;Brumfiel,TimothyA;Sarma,Achraj;Desai,JaydevP
- 通讯作者:Desai,JaydevP
A Robotically Steerable Guidewire With Forward-Viewing Ultrasound: Development of Technology for Minimally-Invasive Imaging.
- DOI:10.1109/tbme.2020.3042115
- 发表时间:2021-07
- 期刊:
- 影响因子:0
- 作者:Collins GC;Sarma A;Bercu ZL;Desai JP;Lindsey BD
- 通讯作者:Lindsey BD
Phase Modulation Beamforming for Ultrafast Plane-Wave Imaging.
- DOI:10.1109/tuffc.2020.2993763
- 发表时间:2020-10
- 期刊:
- 影响因子:0
- 作者:Jing B;Lindsey BD
- 通讯作者:Lindsey BD
Dual-Resonance (16/32 MHz) Piezoelectric Transducer With a Single Electrical Connection for Forward-Viewing Robotic Guidewire.
- DOI:10.1109/tuffc.2022.3150746
- 发表时间:2022-04
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JAYDEV P. DESAI其他文献
JAYDEV P. DESAI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JAYDEV P. DESAI', 18)}}的其他基金
Steerable Robotic Endoscopic Tools for Pediatric Neurosurgery
用于小儿神经外科的可操纵机器人内窥镜工具
- 批准号:
10217219 - 财政年份:2020
- 资助金额:
$ 67.67万 - 项目类别:
Steerable Robotic Endoscopic Tools for Pediatric Neurosurgery
用于小儿神经外科的可操纵机器人内窥镜工具
- 批准号:
10063219 - 财政年份:2020
- 资助金额:
$ 67.67万 - 项目类别:
Ultrasound-guided, Robotically Steerable Guidewire for Endovascular Interventions
用于血管内介入治疗的超声引导机器人可操纵导丝
- 批准号:
9914884 - 财政年份:2019
- 资助金额:
$ 67.67万 - 项目类别:
Ultrasound-guided, Robotically Steerable Guidewire for Endovascular Interventions
用于血管内介入治疗的超声引导机器人可操纵导丝
- 批准号:
10155555 - 财政年份:2019
- 资助金额:
$ 67.67万 - 项目类别:
Image-guided Intravascular Robotic System for Mitral Valve Repair and Implants
用于二尖瓣修复和植入的图像引导血管内机器人系统
- 批准号:
10117090 - 财政年份:2018
- 资助金额:
$ 67.67万 - 项目类别:
Identification of AF Ablation Targets via a Steerable Actuated Catheter(AFIB)
通过可操纵驱动导管 (AFIB) 识别 AF 消融目标
- 批准号:
9327633 - 财政年份:2015
- 资助金额:
$ 67.67万 - 项目类别:
Identification of AF Ablation Targets via a Steerable Actuated Catheter
通过可操纵驱动导管识别 AF 消融目标
- 批准号:
8893523 - 财政年份:2015
- 资助金额:
$ 67.67万 - 项目类别:
Neurosurgical Intracerebral Hemorrhage Evacuation (NICHE) Robot
神经外科脑出血清除(NICHE)机器人
- 批准号:
9327628 - 财政年份:2014
- 资助金额:
$ 67.67万 - 项目类别:
Neurosurgical Intracerebral Hemorrhage Evacuation (NICHE) Robot
神经外科脑出血清除(NICHE)机器人
- 批准号:
8853860 - 财政年份:2014
- 资助金额:
$ 67.67万 - 项目类别:
Neurosurgical Intracerebral Hemorrhage Evacuation (NICHE) Robot
神经外科脑出血清除(NICHE)机器人
- 批准号:
8684084 - 财政年份:2014
- 资助金额:
$ 67.67万 - 项目类别:
相似国自然基金
面向3D打印平行机的精确调度算法与动态调整机制研究
- 批准号:72301196
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
适于3D打印的肌球蛋白微凝胶Pickering乳液富脂鱼糜的稳定机制
- 批准号:32360595
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于3D生物打印类器官模型探究PAK5调控三阴性乳腺癌铂类耐药的机制研究
- 批准号:82303979
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
构建生物3D打印类器官芯片模型研究弹性蛋白-整合素在胃癌免疫微环境中的作用
- 批准号:32371472
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
3D打印功能化仿生神经纤维修复脊髓损伤的作用及机制研究
- 批准号:82301560
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Individual cell bioprinting to generate multi-tissue type condensations for osteochondral tissue regeneration
单个细胞生物打印可生成用于骨软骨组织再生的多组织类型浓缩物
- 批准号:
10659772 - 财政年份:2023
- 资助金额:
$ 67.67万 - 项目类别:
Multi-tissue type condensations for trachea tissue regeneration via individual cell bioprinting
通过单细胞生物打印进行气管组织再生的多组织类型浓缩
- 批准号:
10643041 - 财政年份:2023
- 资助金额:
$ 67.67万 - 项目类别:
Modality-independent representations of object shape in macaque inferotemporal cortex
猕猴下颞叶皮层物体形状的模态无关表示
- 批准号:
10679530 - 财政年份:2023
- 资助金额:
$ 67.67万 - 项目类别:
Modernization of 3-dimensional printing capabilities at the Aquatic Germplasm and Genetic Resource Center
水产种质和遗传资源中心 3 维打印能力的现代化
- 批准号:
10736961 - 财政年份:2023
- 资助金额:
$ 67.67万 - 项目类别:
3D Bioprinted Nipple-Areolar Complex Implants
3D 生物打印乳头乳晕复合植入物
- 批准号:
10672784 - 财政年份:2023
- 资助金额:
$ 67.67万 - 项目类别: