Creating adaptive, wearable technologies to assess and intervene for individuals with ADRDs
创建自适应可穿戴技术来评估和干预 ADRD 患者
基本信息
- 批准号:10390367
- 负责人:
- 金额:$ 89.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAlzheimer&aposs disease related dementiaAreaBehaviorClinical ResearchCognitiveCollaborationsComputing MethodologiesDataDetectionEnvironmentEthnic OriginFoundationsGenerationsGeneticHealthHealth Care CostsHealth behaviorHumanIndividualInterdisciplinary StudyInterventionLinkMachine LearningMeasuresMemoryMentorsMethodsModelingNeuropsychologyPatternPerformancePersonsPopulation HeterogeneityQuality of CareQuality of lifeRecording of previous eventsResearchResearch PersonnelResourcesSeriesSourceTechnologyTrainingUnderrepresented PopulationsUnited States National Institutes of HealthWorkbuilt environmentcareercomputer sciencecostdesigndigitalexperiencefunctional disabilitygraduate studenthealth assessmentimprovedinnovationinsightmedication compliancemultidisciplinarynovelpredictive modelingprogramsrecruitsensorsmart homestudent trainingwearable devicewearable sensor technologywebinar
项目摘要
PROJECT SUMMARY / ABSTRACT
Advances in machine learning and low-cost, wearable sensors offer a practical method for understanding,
assessing, and intervening for Alzheimer's Disease and Related Dementias (ADRDs) in everyday spaces. We
propose to create a Behaviorome research program that will create ground-breaking methods for building
health-predictive models from wearable sensor data by mapping patterns of behavior using machine learning
and pervasive computing technologies. This program will create innovative multidisciplinary ideas to address
NIH ADRD Milestone 11.c, Embed wearable technologies/pervasive computing in existing and new clinical
research. Our research program builds on a history of interdisciplinary research contributions in areas
including human behavior modeling from longitudinal sensor data and design of novel assessment and
intervention mechanisms. We propose to design and validate methods for mapping a human behaviorome “in
the wild”, automatically assessing cognitive and functional health from behavior markers, scaling technologies
through machine learning, linking health and behavior with their influences, and closing the loop with
automated interventions. Similarly, our mentoring program builds on experience training students and early-
career investigators to become leaders in the field of gerontechnology. We will recruit and train graduate
students and early-stage researchers, including those from underrepresented groups, to grow an institutional
multidisciplinary Behaviorome research program and to establish new research programs that contribute to
the targeted Milestone. We will scale the impact of mentoring by establishing a webinar series and creating
youtube videos that highlight and explain breakthroughs in the design and application of Behaviorome
research. Results of this program will include scripts and templates to construct a behaviorome with resource-
limited wearable devices, scale data and models to large diverse populations, integrate data with multiple
information sources (e.g., genetics), automate health assessment and intervention, and create understandable
explanations of data and models. These will contribute to existing clinical studies such as the clinician-in-the-
loop smart home, digital memory notebook, and pervasive computing measures of functional performance.
Furthermore, they will lead to new clinical studies that formalize connections between health and its
influences, exploration of the impact of ethnicity and the built environment on health, and the design of ADRD
interventions for medication adherence, task prompting, and negative interaction de-escalation. The proposed
contributions are significant because they will provide insights on detecting and assessing ADRDs within a
person's everyday environment using wearable sensing and pervasive computing methods that have not been
investigated in prior work. Additionally, the mentoring steps will pave the way for a new generation of
researchers to offer improved methods of addressing the need to understand, assess, and intervene for ADRDs
in everyday settings, thereby improving quality of life and reducing health care costs.
项目概要/摘要
机器学习和低成本可穿戴传感器的进步为理解、
评估和干预日常生活中的阿尔茨海默病和相关痴呆症 (ADRD)。
提议创建一个行为组研究计划,该计划将创造突破性的建筑方法
通过使用机器学习映射行为模式,根据可穿戴传感器数据建立健康预测模型
该计划将创造创新的多学科想法来解决。
NIH ADRD 里程碑 11.c,将可穿戴技术/普适计算嵌入现有和新的临床中
我们的研究计划建立在跨学科研究贡献的历史基础上。
包括根据纵向传感器数据进行人类行为建模以及新颖的评估和设计
我们建议设计和验证绘制人类行为组的方法。
野外”,通过行为标记、扩展技术自动评估认知和功能健康
通过机器学习,将健康和行为与其影响联系起来,并与
同样,我们的指导计划建立在培训学生和早期干预的经验之上。
职业调查员成为老年科技领域的领导者我们将招募和培训毕业生。
学生和早期研究人员,包括来自代表性不足群体的研究人员,以发展一个机构
多学科行为组学研究计划,并建立新的研究计划,有助于
我们将通过建立网络研讨会系列并创建目标里程碑来扩大指导的影响。
YouTube 视频突出并解释了Behaviorome 设计和应用方面的突破
该计划的研究结果将包括用于构建具有资源的行为组的脚本和模板。
有限的可穿戴设备,将数据和模型扩展到大量不同的人群,将数据与多个
信息源(例如遗传学),自动化健康评估和干预,并创建可理解的
这些将有助于现有的临床研究,例如临床医生。
循环智能家居、数字内存笔记本以及功能性能的普适计算测量。
此外,它们还将带来新的临床研究,使健康与其健康之间的联系正式化。
影响,探索种族和建筑环境对健康的影响,以及 ADRD 的设计
药物依从性、任务提示和负面相互作用降级的干预措施。
贡献是重要的,因为它们将提供有关在一定范围内检测和评估 ADRD 的见解。
人们的日常环境使用尚未被广泛应用的可穿戴传感和普适计算方法
此外,指导步骤将为新一代铺平道路。
研究人员提供改进的方法来满足理解、评估和干预 ADRD 的需求
在日常生活中,从而提高生活质量并降低医疗保健成本。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Diane Joyce Cook其他文献
Diane Joyce Cook的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Diane Joyce Cook', 18)}}的其他基金
Creating adaptive, wearable technologies to assess and intervene for individuals with ADRDs
创建自适应可穿戴技术来评估和干预 ADRD 患者
- 批准号:
10616670 - 财政年份:2021
- 资助金额:
$ 89.69万 - 项目类别:
Crowdsourcing Labels and Explanations to Build More Robust, Explainable AI/ML Activity Models
众包标签和解释以构建更强大、可解释的 AI/ML 活动模型
- 批准号:
10833847 - 财政年份:2020
- 资助金额:
$ 89.69万 - 项目类别:
Multi-modal functional health assessment and intervention for individuals experiencing cognitive decline
针对认知能力下降个体的多模式功能健康评估和干预
- 批准号:
10426321 - 财政年份:2020
- 资助金额:
$ 89.69万 - 项目类别:
Multi-modal functional health assessment and intervention for individuals experiencing cognitive decline
针对认知能力下降个体的多模式功能健康评估和干预
- 批准号:
10092007 - 财政年份:2020
- 资助金额:
$ 89.69万 - 项目类别:
Multi-modal functional health assessment and intervention for individuals experiencing cognitive decline
针对认知能力下降个体的多模式功能健康评估和干预
- 批准号:
10662381 - 财政年份:2020
- 资助金额:
$ 89.69万 - 项目类别:
Multi-modal functional health assessment and intervention for individuals experiencing cognitive decline
针对认知能力下降个体的多模式功能健康评估和干预
- 批准号:
10267717 - 财政年份:2020
- 资助金额:
$ 89.69万 - 项目类别:
Automated Health Assessment through Mobile Sensing and Machine Learning of Daily Activities
通过日常活动的移动传感和机器学习进行自动健康评估
- 批准号:
10683062 - 财政年份:2019
- 资助金额:
$ 89.69万 - 项目类别:
Automated Health Assessment through Mobile Sensing and Machine Learning of Daily Activities
通过日常活动的移动传感和机器学习进行自动健康评估
- 批准号:
10472075 - 财政年份:2019
- 资助金额:
$ 89.69万 - 项目类别:
A clinician-in-the-loop smart home to support health monitoring and intervention for chronic conditions
临床医生在环智能家居,支持慢性病的健康监测和干预
- 批准号:
10367017 - 财政年份:2017
- 资助金额:
$ 89.69万 - 项目类别:
A clinician-in-the-loop smart home to support health monitoring and intervention for chronic conditions: Supplement to focus on Alzheimer's and/or other dementias
支持健康监测和慢性病干预的临床医生智能家居:专注于阿尔茨海默氏症和/或其他痴呆症的补充
- 批准号:
10086759 - 财政年份:2017
- 资助金额:
$ 89.69万 - 项目类别:
相似国自然基金
基于空间代谢流技术探究人参-远志药对通过纠偏单胺类神经递质代谢紊乱治疗阿尔茨海默病的整合作用模式
- 批准号:82304894
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
阿尔茨海默病早期认知功能下降病情演化临界预警模型研究
- 批准号:82371484
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SETDB1调控小胶质细胞功能及参与阿尔茨海默病发病机制的研究
- 批准号:82371419
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
小胶质细胞特异罕见易感突变介导相分离影响阿尔茨海默病发病风险的机制
- 批准号:82371438
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
GFAP-C291棕榈酰化激活星型胶质细胞在阿尔茨海默病中的作用和机制及干预研究
- 批准号:32371309
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 89.69万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 89.69万 - 项目类别:
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
- 批准号:
10642607 - 财政年份:2023
- 资助金额:
$ 89.69万 - 项目类别:
Designing novel therapeutics for Alzheimer’s disease using structural studies of tau
利用 tau 蛋白结构研究设计治疗阿尔茨海默病的新疗法
- 批准号:
10678341 - 财政年份:2023
- 资助金额:
$ 89.69万 - 项目类别: