Automated Health Assessment through Mobile Sensing and Machine Learning of Daily Activities
通过日常活动的移动传感和机器学习进行自动健康评估
基本信息
- 批准号:10472075
- 负责人:
- 金额:$ 117.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-20 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:Activities of Daily LivingAddressAdherenceAdultAgeAgingAlzheimer&aposs disease related dementiaAttenuatedAwarenessBackBehaviorCaregiver BurdenCaregiversCaringChronicClinicalCognitionCognitiveDataDevelopmentEarly DiagnosisEducational MaterialsElderlyEnsureEnvironmentEquilibriumEvaluationFamilyFamily health statusFeedbackFutureGoalsHealthHealth Care CostsHealth PersonnelHealth StatusHealth behaviorHomeHome Nursing CareImpaired cognitionIndependent LivingIndividualInsuranceIntelligenceInterdisciplinary StudyInternetInterventionLabelLeadLearningLifeLinkMachine LearningMeasuresMemoryMethodsModelingMoodsOnline SystemsOutcomeOutcome MeasureParticipantPatient Self-ReportPatternPersonsPhasePopulationProcessPublic HealthQuality of lifeReportingResearchRiskSamplingSelf ManagementServicesSmall Business Innovation Research GrantSocietiesSuggestionSystemTechnologyTechnology AssessmentTestingTimeTrail Making TestVisualWorkactivity markerage relatedbasebrain behaviorbrain healthcare costscare providersclinical predictorsclinically relevantcommercial applicationcommercializationdashboarddesigndigitaleffective therapyexperiencefunctional declinefunctional independencehealth assessmenthealth care availabilityhealth care qualityimprovedinnovationinsightlearning strategymachine learning methodmild cognitive impairmentmobile sensingnew technologynovelpersonalized carepersonalized medicinephase 1 studyphase 2 studyphysical conditioningpreventprimary outcomerecruitresearch and developmentresearch clinical testingsecondary outcomesensorsmart watchsuccesstooltreatment planningtrendunderserved areausabilitywearable sensor technology
项目摘要
PROJECT SUMMARY / ABSTRACT
The world's population is aging and the increasing number of older adults with Alzheimer's disease and
related dementias (ADRDs) is a challenge our society must address. While the future of healthcare availability
and quality of services seems uncertain, at the same time advances in pervasive computing and intelligent
embedded systems provide innovative strategies to meet these needs. Two particular needs which technology
can help address is early detection of cognitive and physical decline, and tracking integration of new, healthy
brain behaviors into everyday life. The long-term goal for Adaptelligence LLC is to commercialize a smartwatch
app, called AcTelligence, to assess a person's cognitive and physical health and to promote healthy brain
behavior. The objective of this application is to perform research a development to refine and commercialize a
smartwatch app that offers capabilities to detect activities of daily living from smartwatch sensors, extract
digital behavior markers from activity-labeled sensor data, predict clinical health measures from behavior
markers, and provide user feedback in the form of health status and healthy-behavior prompts. This technology
is unique because we consider a person's entire behavior profile and introduce machine learning methods to
robustly predict clinical measures from this information. We utilize a popular smartwatch platform to increase
accessibility and balance continuous assessment with opportunities to extend and improve health. Building on
our successful Phase I effort, our approach is to extract activity-aware digital behavior markers from
smartwatch sensor data (Aim 1), automate health assessment based on these markers (Aim 2), and perform
participatory design of a web dashboard that provides visual analytics and alerts for brain health (Aim 3). We
will validate the sensing and machine learning technologies for a sample of 100 older adults and will refine the
interactive analytics through multiple rounds of participatory design with 18 participants. The app will be
brought to market through a thorough market analysis and a strategically-designed commercialization plan.
The proposed contributions are significant because they will provide insights on cognitive and physical health
revealed within a person's everyday environment that promote early detection of cognitive and physical decline
that can lead to more effective treatment. This work is important because of the increasing number of older
individuals experiencing cognitive and functional limitations due to chronic health conditions. Furthermore,
the work addresses the need for individuals to remain functionally independent as long as possible in their own
homes, thereby improving quality of life and reducing health care costs.
项目摘要 /摘要
世界的人口正在衰老,老年人患有阿尔茨海默氏病和
相关痴呆症(ADRD)是我们社会必须解决的挑战。而医疗保健可用性的未来
服务质量似乎不确定,同时在普遍计算和智能上进步
嵌入式系统提供了满足这些需求的创新策略。技术的两个特定需求
可以帮助解决的是早期发现认知和身体衰落,并跟踪新的,健康的整合
大脑行为进入日常生活。 Adaptelligence LLC的长期目标是商业化智能手表
应用程序称为Aptligence,以评估一个人的认知和身体健康并促进健康的大脑
行为。该应用的目的是进行研究开发,以完善和商业化
智能手表应用程序提供可检测智能手表传感器日常生活活动的功能,提取
来自活动标记的传感器数据的数字行为标记,可预测行为的临床健康指标
标记,并以健康状况和健康行为提示的形式提供用户反馈。这项技术
之所以独特,是因为我们考虑一个人的整个行为概况,并将机器学习方法介绍给
从此信息中坚固地预测临床指标。我们利用流行的智能手表平台来增加
可访问性和平衡持续评估与扩展和改善健康的机会。建立
我们成功的第一阶段努力,我们的方法是从
智能手表传感器数据(AIM 1),基于这些标记(AIM 2)自动化健康评估,并执行
网络仪表板的参与设计,可为大脑健康提供视觉分析和警报(AIM 3)。我们
将验证100名老年人样本的感应和机器学习技术,并将完善
通过与18个参与者进行多个参与设计的互动分析。该应用将是
通过彻底的市场分析和战略设计的商业化计划进入市场。
拟议的贡献很重要,因为它们将提供有关认知和身体健康的见解
在一个人的日常环境中揭示,以促进认知和身体下降的早期发现
这可以导致更有效的治疗。这项工作很重要,因为较老的数量增加
由于慢性健康状况而遭受认知和功能限制的个人。此外,
这项工作解决了个人必须尽可能长时间保持功能独立的需求
房屋,从而提高生活质量并降低医疗保健成本。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Diane Joyce Cook其他文献
Diane Joyce Cook的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Diane Joyce Cook', 18)}}的其他基金
Creating adaptive, wearable technologies to assess and intervene for individuals with ADRDs
创建自适应可穿戴技术来评估和干预 ADRD 患者
- 批准号:
10616670 - 财政年份:2021
- 资助金额:
$ 117.85万 - 项目类别:
Creating adaptive, wearable technologies to assess and intervene for individuals with ADRDs
创建自适应可穿戴技术来评估和干预 ADRD 患者
- 批准号:
10390367 - 财政年份:2021
- 资助金额:
$ 117.85万 - 项目类别:
Crowdsourcing Labels and Explanations to Build More Robust, Explainable AI/ML Activity Models
众包标签和解释以构建更强大、可解释的 AI/ML 活动模型
- 批准号:
10833847 - 财政年份:2020
- 资助金额:
$ 117.85万 - 项目类别:
Multi-modal functional health assessment and intervention for individuals experiencing cognitive decline
针对认知能力下降个体的多模式功能健康评估和干预
- 批准号:
10426321 - 财政年份:2020
- 资助金额:
$ 117.85万 - 项目类别:
Multi-modal functional health assessment and intervention for individuals experiencing cognitive decline
针对认知能力下降个体的多模式功能健康评估和干预
- 批准号:
10092007 - 财政年份:2020
- 资助金额:
$ 117.85万 - 项目类别:
Multi-modal functional health assessment and intervention for individuals experiencing cognitive decline
针对认知能力下降个体的多模式功能健康评估和干预
- 批准号:
10662381 - 财政年份:2020
- 资助金额:
$ 117.85万 - 项目类别:
Multi-modal functional health assessment and intervention for individuals experiencing cognitive decline
针对认知能力下降个体的多模式功能健康评估和干预
- 批准号:
10267717 - 财政年份:2020
- 资助金额:
$ 117.85万 - 项目类别:
Automated Health Assessment through Mobile Sensing and Machine Learning of Daily Activities
通过日常活动的移动传感和机器学习进行自动健康评估
- 批准号:
10683062 - 财政年份:2019
- 资助金额:
$ 117.85万 - 项目类别:
A clinician-in-the-loop smart home to support health monitoring and intervention for chronic conditions
临床医生在环智能家居,支持慢性病的健康监测和干预
- 批准号:
10367017 - 财政年份:2017
- 资助金额:
$ 117.85万 - 项目类别:
A clinician-in-the-loop smart home to support health monitoring and intervention for chronic conditions: Supplement to focus on Alzheimer's and/or other dementias
支持健康监测和慢性病干预的临床医生智能家居:专注于阿尔茨海默氏症和/或其他痴呆症的补充
- 批准号:
10086759 - 财政年份:2017
- 资助金额:
$ 117.85万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Biobehavioral Intervention to Reduce PTSD Symptoms After an ICD Shock
生物行为干预可减少 ICD 电击后的 PTSD 症状
- 批准号:
10722157 - 财政年份:2023
- 资助金额:
$ 117.85万 - 项目类别:
Using Artificial Intelligence to Predict Cognitive Training Response in Amnestic Mild Cognitive Impairment
使用人工智能预测遗忘型轻度认知障碍患者的认知训练反应
- 批准号:
10572105 - 财政年份:2023
- 资助金额:
$ 117.85万 - 项目类别:
Mindful Steps: A Web-Based Mind-Body Exercise Intervention to Promote Physical Activity in Chronic Cardiopulmonary Disease
正念步骤:基于网络的身心运动干预,促进慢性心肺疾病的体力活动
- 批准号:
10732824 - 财政年份:2023
- 资助金额:
$ 117.85万 - 项目类别:
Improving exercise rehabilitation efficacy and outcomes in Veterans with peripheral artery disease: Targeting oxidative stress and inflammation
提高患有外周动脉疾病的退伍军人的运动康复效果和结果:针对氧化应激和炎症
- 批准号:
10638943 - 财政年份:2023
- 资助金额:
$ 117.85万 - 项目类别:
Efficacy of Preoperative Oral Iron Supplementation in Adolescents Undergoing Scoliosis Surgery
术前口服铁补充剂对接受脊柱侧凸手术的青少年的疗效
- 批准号:
10785834 - 财政年份:2023
- 资助金额:
$ 117.85万 - 项目类别: