Using Artificial Intelligence to Predict Cognitive Training Response in Amnestic Mild Cognitive Impairment
使用人工智能预测遗忘型轻度认知障碍患者的认知训练反应
基本信息
- 批准号:10572105
- 负责人:
- 金额:$ 16.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:Activities of Daily LivingAddressAdherenceAlzheimer&aposs DiseaseAlzheimer&aposs disease riskAnalysis of VarianceArtificial IntelligenceAttentionBehavior TherapyBiometryBrainBrain regionCharacteristicsClinicalClinical TrialsCognitiveCognitive TherapyCognitive agingComplexControl GroupsDataData SetDecision MakingDiagnosisDiseaseDisease ProgressionEducational InterventionEducational workshopEffectivenessElderlyFloridaFoundationsFunctional Magnetic Resonance ImagingFutureHealthcareHomeImpairmentIndividualInfrastructureInterventionIntervention TrialInvestigationInvestigative TechniquesLifeLogistic RegressionsMachine LearningMagnetic Resonance ImagingMemoryMentored Patient-Oriented Research Career Development AwardMentorsMentorshipMethodologyModelingNeuroanatomyNeurobiologyNeurocognitiveNeurodegenerative DisordersNeurosciencesOutcomePatientsPatternPerformancePersonsPopulationPopulations at RiskPredictive FactorPrefrontal CortexProxyPublic HealthQuality of lifeResearchResearch PersonnelResourcesRestRiskSample SizeSamplingScienceShort-Term MemoryStructureSuperior temporal gyrusTechniquesThinkingTrainingTraining ProgramsTraining and EducationUniversitiesWorkamnestic mild cognitive impairmentbehavioral clinical trialcareercareer developmentclinical translationcognitive performancecognitive trainingcohortcomparison controldesignexecutive functionexperiencegray mattergroup interventionhigh riskimprovedindividual patientinnovationmachine learning modelmild cognitive impairmentmultimodal neuroimagingneuralneuroimagingnormal agingpaymentpersonalized interventionpersonalized medicinepredicting responsepredictive modelingprocessing speedprofessorrandom forestrecruitresponders and non-respondersresponseskillssupport vector machinetooltreatment effectvectorwhite matter
项目摘要
Project Summary/Abstract:
This K23 Clinical Trial project will provide Dr. Gullett, an Assistant Professor at the University of Florida, the direct
mentored-training needed to address important questions related to intervention response in an amnestic mild
cognitive impairment (aMCI) diagnosed population at risk for Alzheimer’s disease. As a neuropsychologist, Dr. Gullett
has gained clinical experience in the assessment of neurodegenerative diseases including Alzheimer’s disease and
its precursor, MCI, as well as research experience using structural neuroimaging to investigate various clinical
disorders. The support provided by the K23 mechanism through the NIA will provide Dr. Gullett with the protected
mentored-training needed to build on his current skills and become an expert in clinical neuroscience, machine
learning, and behavioral interventions for mild cognitive impairment and Alzheimer’s disease.
Career development and training plan: Dr. Gullett’s training plan consists of foundational formal coursework in 1)
clinical trials, 2) MCI and Alzheimer’s disease effects, and 3) biostatistics and machine learning investigative
techniques. These foundations will be directly applied through mentorship by experts in the fields of behavioral
cognitive interventions, neuroimaging, and machine learning, as well as a proposed in-person workshop in functional
neuroimaging analysis. This mentored-training plan will provide Dr. Gullett with the expertise to not only carry out the
proposed project, but to become a unique and invaluable resource for future collaborative efforts applying
neuroscience-based machine learning tools to investigate personalized interventions for Alzheimer’s disease.
Research plan: The proposed project will provide the clinical trials training needed for Dr. Gullett to establish the
effectiveness of a planned take-home, 12-week cognitive training program in patients with amnestic mild cognitive
impairment (N=75; Aim 1). The expert mentorship team proposed has decades of experience in behavioral clinical
trials interventions, which will provide the applicant with design and methodology guidance, as well as the recruitment
infrastructure and resources needed to successfully carry out the proposed project. Further, this project will provide
training in multi-modal neuroimaging-based machine learning to determine the baseline neural, cognitive, and
functional factors that distinguish aMCI patients who respond to treatment from those who do not (Aim 2). This
innovative approach will ultimately allow the applicant to investigate which of a myriad of features aMCI patients
possess at a baseline assessment are the most salient predictors of their ability to improve from a well-validated
cognitive training intervention. A project such as this will enable Dr. Gullett to develop a unique skillset to facilitate an
R01-level academic career tasked with providing individual aMCI patients personalized interventions based on their
own unique neurobiological and cognitive features.
项目摘要/摘要:
这个K23临床试验项目将为佛罗里达大学的助理教授Gullett博士提供直接
需要鉴定培训,以解决与干预反应有关的重要问题
认知障碍(AMCI)诊断出患阿尔茨海默氏病风险的人口。作为神经心理学家Gullett博士
在评估神经退行性疾病(包括阿尔茨海默氏病)和
它的前体MCI以及使用结构神经影像学研究各种临床的研究经验
疾病。 K23机制通过NIA提供的支持将为Gullett博士提供受保护的支持
需要鉴定培训才能以他当前的技能为基础,并成为临床神经科学,机器的专家
对轻度认知障碍和阿尔茨海默氏病的学习和行为干预措施。
职业发展和培训计划:Gullett博士的培训计划包括1中的基础正式课程)
临床试验,2)MCI和阿尔茨海默氏病影响,以及3)生物统计学和机器学习调查
技术。这些基金会将通过行为领域的专家直接通过Mentalship直接应用
认知干预措施,神经影像学和机器学习以及功能性的面对面研讨会
神经影像分析。该修改培训计划将为Gullett博士提供专业知识,不仅执行
拟议的项目,但要成为应用程序的独特且宝贵的资源
基于神经科学的机器学习工具,以调查阿尔茨海默氏病的个性化干预措施。
研究计划:拟议的项目将提供Gullett博士建立所需的临床试验培训
计划的带回家,为期12周的认知训练计划的有效性
障碍(n = 75;目标1)。提出的专家Mentalship团队在行为临床方面拥有数十年的经验
试验干预措施将为申请人提供设计和方法论指导以及招聘
成功执行拟议项目所需的基础设施和资源。此外,该项目将提供
基于多模式神经影像学的机器学习培训,以确定基线神经元,认知和
区分AMCI患者的功能因素与不接受治疗的患者(AIM 2)。这
创新的方法最终将允许适用的方法调查AMCI患者的多种功能
在基线评估中拥有的最显着预测因素是它们从验证良好的验证中提高的能力
认知训练干预措施。这样的项目将使Gullett博士能够发展出独特的技能,以促进
R01级的学术职业的任务是根据他们的AMCI患者的个性化干预措施
自己独特的神经生物学和认知特征。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOSEPH M GULLETT其他文献
JOSEPH M GULLETT的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Biobehavioral Intervention to Reduce PTSD Symptoms After an ICD Shock
生物行为干预可减少 ICD 电击后的 PTSD 症状
- 批准号:
10722157 - 财政年份:2023
- 资助金额:
$ 16.01万 - 项目类别:
Mindful Steps: A Web-Based Mind-Body Exercise Intervention to Promote Physical Activity in Chronic Cardiopulmonary Disease
正念步骤:基于网络的身心运动干预,促进慢性心肺疾病的体力活动
- 批准号:
10732824 - 财政年份:2023
- 资助金额:
$ 16.01万 - 项目类别:
Improving exercise rehabilitation efficacy and outcomes in Veterans with peripheral artery disease: Targeting oxidative stress and inflammation
提高患有外周动脉疾病的退伍军人的运动康复效果和结果:针对氧化应激和炎症
- 批准号:
10638943 - 财政年份:2023
- 资助金额:
$ 16.01万 - 项目类别:
Efficacy of Preoperative Oral Iron Supplementation in Adolescents Undergoing Scoliosis Surgery
术前口服铁补充剂对接受脊柱侧凸手术的青少年的疗效
- 批准号:
10785834 - 财政年份:2023
- 资助金额:
$ 16.01万 - 项目类别:
Beacon Sensors and Telerehabilitation to Assess and Improve use of Devices (BeST-AID) for Low Vision
用于评估和改善低视力设备使用的信标传感器和远程康复 (BeST-AID)
- 批准号:
10736559 - 财政年份:2023
- 资助金额:
$ 16.01万 - 项目类别: