Mechanotransduction by Melusin in Cardiac Hypertrophy
Melusin 在心脏肥大中的机械转导
基本信息
- 批准号:10207763
- 负责人:
- 金额:$ 53.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D PrintAdhesionsAffectAnimal ModelApoptosisAttenuatedBindingBinding ProteinsBiological AssayBiomedical EngineeringBioreactorsCalciumCardiacCardiac MyocytesCell SizeCellsCo-ImmunoprecipitationsCollaborationsComplexDevelopmentDilated CardiomyopathyEchocardiographyExerciseGap JunctionsGene ExpressionGoalsGrowthHeadHealthHeartHeart DiseasesHeart HypertrophyHeart failureHistologyHumanHuman EngineeringHypertrophic CardiomyopathyHypertrophyImpairmentIndividualInheritedIntegrin BindingIntegrinsKnock-outLengthMass Spectrum AnalysisMechanicsMediatingModelingMolecularMolecular BiologyMonitorMusMutationMyocardial tissueMyofibrilsOrganoidsPTK2 genePathologicPathway interactionsPhysiologicalPhysiologyPlayPregnancyProteinsProto-Oncogene Proteins c-aktReportingResistanceRiskRoleSignal PathwaySignal TransductionSignaling ProteinSiliconesSiteStressStretchingSystemTailTestingTetracyclinesThickTissuesTrans-ActivatorsTransgenic MiceTroponin CUniversitiesVariantViralWashingtonWorkbasecardiac pacingcardiac tissue engineeringcardiovascular risk factorconstrictionexercise trainingfascinateflexibilityhemodynamicsinduced pluripotent stem cellinherited cardiomyopathymechanotransductionmolecular diagnosticsnoveloverexpressionpredictive modelingpreventrecruitresponsestem cell biology
项目摘要
PROJECT SUMMARY/ABSTRACT
The goal of the proposed work is to determine if melusin acts as a cardiac-specific mechanotransducer in human
cardiomyocytes leading to hypertrophy, and unravel the mechanisms leading to activation of this pathway.
Myocardial tissue responds to elevated hemodynamic load by hypertrophic growth to increase wall thickness
and thereby reduce wall stress. How these loads are transduced by individual cardiomyocytes in the heart is not
well understood, but melusin (ITGB1BP2), a β1 integrin binding protein, may play an important role. Melusin
forms a signalosome at the costameres of cardiomyocytes and sits at a nexus between two major hypertrophic
pathways, ERK and AKT. We hypothesize that it has an autoinhibitory state due to intramolecular interactions
that hinder its effect in hypertrophic signaling, but this autoinhibition may be attenuated in response to tension.
The specific aims of this proposal will test the effects of melusin on pathological and physiological hypertrophy
in transgenic mice, conduct controllable mechanistic studies in human engineered heart tissue, and examine
whether intramolecular interactions inhibit its assembly at adhesion sites. These studies will elucidate if melusin
plays a role in tension-mediated hypertrophy and verify its response in a human cardiac organoid model and
with bioengineering approaches using human induced pluripotent stem cell derived cardiomyocytes. The health
impact of this work will identify whether melusin is a key player in hypertrophy and provide a detailed
understanding on how melusin affects cardiac growth in response to inherited cardiomyopathies and
hemodynamic overload.
项目摘要/摘要
支撑工作的目的是确定梅洛蛋白在人类中是否充当心脏特异性机械转换器。
心肌细胞导致肥大,并揭示导致该途径激活的机制。
心肌组织通过肥厚性生长对血液动力学负荷的升高反应,以增加壁厚
从而减少壁压力。
良好的理解,但是梅洛蛋白(ITGB1BP2)是β1整联蛋白结合蛋白,可能起重要作用
在心肌细胞的成分体处形成信号体,并位于两个主要肥厚型之间的Nexus
途径,ERK和AKT。
这阻碍了其在肥厚的信号中的影响
该提案的具体目的将测试梅洛素对病理和生理肥大的影响
在转基因小鼠中,在人类发动机组织中进行可控的机械研究,并检查
分子内是否会抑制其组装位点。
在张力介导的肥大中起作用,并在人类心脏器官模型中验证其反应
使用人类诱导的多能干细胞衍生的心肌细胞的生物工程方法。
世界的影响将确定Melusin是否是肥大的关键参与者,并提供详细的
了解梅洛素如何影响遗传性心肌病和
血液动力学超负荷。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nathan John Sniadecki其他文献
Nathan John Sniadecki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nathan John Sniadecki', 18)}}的其他基金
Mechanotransduction by Melusin in Cardiac Hypertrophy
Melusin 在心脏肥大中的机械转导
- 批准号:
10454378 - 财政年份:2020
- 资助金额:
$ 53.99万 - 项目类别:
Mechanotransduction by Melusin in Cardiac Hypertrophy
Melusin 在心脏肥大中的机械转导
- 批准号:
10653705 - 财政年份:2020
- 资助金额:
$ 53.99万 - 项目类别:
相似国自然基金
自由曲面空间网格结构3D打印节点力学性能与智能优化研究
- 批准号:52378167
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
高面能量密度全3D打印微型锌离子混合电容器的构筑与储能机理研究
- 批准号:22309176
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
3D打印-前端聚合反应耦合新方法构筑凝胶支架材料及其应用基础研究
- 批准号:22378202
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
分层悬浮3D打印工程化类弹性蛋白用于组织工程肺脏的构建研究
- 批准号:32301209
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
3D打印多孔钛合金诱导瘢痕组织膜内巨噬细胞分泌TNFα+/TGFβ1+/BMP2+组织液促进大段骨缺损修复
- 批准号:82302684
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of an ultrasound detectable, migration-resistant biopsy marker for improving care in patients with breast cancer
开发超声波可检测、抗迁移的活检标记物,以改善乳腺癌患者的护理
- 批准号:
10585262 - 财政年份:2022
- 资助金额:
$ 53.99万 - 项目类别:
Development of a Novel Bioinspired Pelvic Organ Prolapse Repair Graft
新型仿生盆腔器官脱垂修复移植物的开发
- 批准号:
10678635 - 财政年份:2022
- 资助金额:
$ 53.99万 - 项目类别:
A Novel Semi-autonomous Surgeon-in-the-loop in situ Robotic Bioprinting System for Functional and Cosmetic Restoration of Volumetric Muscle Loss Injuries
一种新型半自主外科医生在环原位机器人生物打印系统,用于体积肌肉丢失损伤的功能和美容恢复
- 批准号:
10473273 - 财政年份:2022
- 资助金额:
$ 53.99万 - 项目类别:
Small Scale Robotics for Automated Dental Biofilm Treatment
用于自动化牙科生物膜治疗的小型机器人
- 批准号:
10427076 - 财政年份:2021
- 资助金额:
$ 53.99万 - 项目类别:
Supplement: Development of an Integrated 3D Human Osteo-Mucosal Model
补充:集成 3D 人体骨粘膜模型的开发
- 批准号:
10403365 - 财政年份:2021
- 资助金额:
$ 53.99万 - 项目类别: