Encoding Temporal Fine Structure for Cochlear Implants
编码人工耳蜗的颞精细结构
基本信息
- 批准号:10361211
- 负责人:
- 金额:$ 34.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:Acoustic NerveAffectAuditoryAuditory systemBypassClinicalCochlear ImplantsCodeComprehensionComputersCuesDevicesElectrodesElectrophysiology (science)FrequenciesGoalsHealthHearingImplantLearningMeasuresMethodsMusicOutcomePerceptionPerceptual learningPeriodicityPhasePhysiologicalPhysiologyPitch PerceptionPsychophysicsQuality of lifeResearchResolutionSensoryShapesSpeechSpeech PerceptionStructureTestingTimeTrainingUncertaintyVoiceWorkauditory discriminationbaseexperienceexperimental studyimprovedinnovationneural modelnormal hearingrelating to nervous systemresponsesound
项目摘要
PROJECT SUMMARY
The goal of this work is to improve music and speech perception for cochlear implant users. The relevant health
outcome is their quality of life. This proposal focuses on how well cochlear implant users can learn to use
temporal fine structure if provided as a clear and consistent cue for music or voice pitch. Historically, cochlear
implants have discarded temporal fine structure and have only transmitted timing information of relatively slow
envelope fluctuations. Attempts have been made to restore temporal fine structure into cochlear implant
stimulation, but it is unclear whether previous attempts were limited by implementation, lack of experience, or
inherently by physiology. The proposed approach is unique in that it examines the perceptual and physiological
plasticity that occurs when temporal fine structure is restored. Proposed research is organized into two aims,
which examine the relative salience of stimulation place and rate for providing a sense of pitch (Aim 1) and the
salience of dynamic-rate stimulation compared to conventional methods (Aim 2). Both aims combine perceptual
learning, computer-controlled electrode psychophysics, electrophysiology, and computational neural modeling
to characterize the plasticity of pitch perception in cochlear implant users.
Aim 1 examines the perceptual and physiological plasticity associated with place and rate of cochlear implant
stimulation. Cochlear implant users hear an increasing pitch associated with increasing stimulation rate, but this
effect is difficult to measure above 300 Hz. Most studies of psychophysical sensitivity to cochlear implant
stimulation rate have not considered perceptual learning. Preliminary results show that the sense of pitch
provided by stimulation rate improves with training. The proposed research examines perceptual sensitivity and
physiological encoding throughout a crossover training study with training provided for pitch based on place and
rate of stimulation. The primary hypothesis tested is that cochlear implant users have a latent ability to hear pitch
associated with stimulation rate, but they require training to learn how to use this new information.
Aim 2 is to determine whether dynamic-rate stimulation provides better sensitivity and better physiological
encoding of fundamental frequency compared to conventional stimulation methods based on amplitude
modulation of constant-rate stimulation. In normal physiology, auditory-nerve activity phase locks to the temporal
fine structure of sound. Since cochlear implants typically discard this information, it is unknown how well cochlear
implant users can learn to use it if provided. Aim 2 focuses on the comparison between dynamic-rate stimulation
in which stimulation rate is dynamically adjusted to convey temporal fine structure compared to conventional
methods based on amplitude modulation of constant-rate stimulation. The primary hypothesis is that dynamic-
rate stimulation provides better pitch sensitivity and better physiological encoding compared to amplitude
modulation of constant-rate stimulation.
项目摘要
这项工作的目的是改善人工耳蜗用户的音乐和语音感知。相关的健康
结果是他们的生活质量。该建议重点是人工耳蜗用户可以学习使用的方式
时间精细的结构如果作为音乐或语音音调的清晰且一致的提示提供。从历史上看,人工耳蜗
植入物丢弃了时间精细的结构,只传输了相对较慢的定时信息
信封波动。已经尝试将时间精细结构恢复到人工耳蜗植入物
刺激,但尚不清楚以前的尝试是否受到实施,缺乏经验或
天生的生理学。提出的方法是独一无二的
恢复时间精细结构时发生的可塑性。拟议的研究分为两个目标:
它检查了提供刺激位置和速率的相对显着性,以提供音高感(AIM 1)和
与常规方法相比,动态速率刺激的显着性(AIM 2)。两个目标结合了感知
学习,计算机控制的电极心理物理学,电生理学和计算神经建模
为了表征人工耳蜗使用者中音调知觉的可塑性。
AIM 1检查与人工耳蜗的位置和速率相关的感知和生理可塑性
刺激。人工耳蜗用户听到刺激率提高相关的音调,但这
效果很难测量300 Hz以上。大多数对耳蜗植入物的心理物理敏感性的研究
刺激率没有考虑感知学习。初步结果表明音高感
刺激率提供的培训提高。拟议的研究检查了感知敏感性和
在整个跨界培训研究中,生理编码,并根据位置和
刺激速率。测试的主要假设是人工耳蜗使用者具有潜在的声音能力
与刺激率有关,但他们需要培训才能学习如何使用此新信息。
目标2是确定动态速率刺激是否提供更好的灵敏度和更好的生理
与基于振幅的常规刺激方法相比,基本频率的编码
调节恒定速率刺激。在正常生理学中,听觉障碍活动阶段锁定到时间上
声音的精细结构。由于耳蜗植入物通常会丢弃此信息,因此尚不清楚人工耳蜗
植入物用户可以学会使用它。 AIM 2专注于动态速率刺激之间的比较
与传统的
基于恒定速率刺激的振幅调节方法。主要假设是动态
与振幅相比,速率刺激具有更好的音高灵敏度和更好的生理编码
调节恒定速率刺激。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RAYMOND L GOLDSWORTHY其他文献
RAYMOND L GOLDSWORTHY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RAYMOND L GOLDSWORTHY', 18)}}的其他基金
Encoding Temporal Fine Structure for Cochlear Implants
编码人工耳蜗的颞精细结构
- 批准号:
10113578 - 财政年份:2020
- 资助金额:
$ 34.95万 - 项目类别:
Encoding Temporal Fine Structure for Cochlear Implants
编码人工耳蜗的颞精细结构
- 批准号:
10570828 - 财政年份:2020
- 资助金额:
$ 34.95万 - 项目类别:
相似国自然基金
听觉剥夺及干预对前庭功能的影响及机制研究
- 批准号:82301299
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
听觉剥夺后下丘对双耳间时间差敏感度下降影响双侧耳蜗植入者声源定位的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
交叉听觉和颅骨非对称性对双侧骨传导助听声源定位的影响与机制
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
噪声暴露对听觉系统和边缘系统的神经投射影响及与耳鸣相关性研究
- 批准号:82071060
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
非匀速听觉节律适应对后续听觉节律加工的影响及其认知神经机制
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
Determining reliability and efficacy of intraoperative sensors to reduce structural damage during cochlear implantation
确定术中传感器的可靠性和有效性,以减少人工耳蜗植入期间的结构损伤
- 批准号:
10760827 - 财政年份:2023
- 资助金额:
$ 34.95万 - 项目类别:
Individualized Profiles of Sensorineural Hearing Loss from Non-Invasive Biomarkers of Peripheral Pathology
周围病理学非侵入性生物标志物的感音神经性听力损失个体化概况
- 批准号:
10827155 - 财政年份:2023
- 资助金额:
$ 34.95万 - 项目类别:
Mechanisms of sensory hair cell reinnervation following lateral line cranial nerve damage in Danio rerio
斑马鱼侧线脑神经损伤后感觉毛细胞神经支配的机制
- 批准号:
10749736 - 财政年份:2023
- 资助金额:
$ 34.95万 - 项目类别:
Place and Time Processing of Pitch in the Context of Cochlear Dysfunction
耳蜗功能障碍背景下音调的地点和时间处理
- 批准号:
10680120 - 财政年份:2023
- 资助金额:
$ 34.95万 - 项目类别: