Mechanisms of sensory hair cell reinnervation following lateral line cranial nerve damage in Danio rerio
斑马鱼侧线脑神经损伤后感觉毛细胞神经支配的机制
基本信息
- 批准号:10749736
- 负责人:
- 金额:$ 5.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:Acoustic NerveAffectAuditoryAxonAxotomyBasement membraneBrainBrain-Derived Neurotrophic FactorCell membraneCell surfaceCellsCochleaCollagenConfocal MicroscopyCranial NervesCuesDataDevelopmentDoctor of PhilosophyEpitheliumExtracellular MatrixFiberFishesFluorescence-Activated Cell SortingGangliaGenesGenomicsGoalsGrowth ConesHair CellsHearingHumanImageImaging TechniquesIndividualInner Hair CellsInstitutionLabelLabyrinthLarvaMammalsMechanicsMemoryMentorshipMicroscopyModelingMolecularNatural regenerationNerveNerve FibersNerve RegenerationNervous SystemNeuritesNeuronsNew York CityOlfactory NerveOrganOrganismPathologyPersonsPhysical environmentPhysiologicalPopulationPositioning AttributePublishingRegenerative capacityRegenerative researchResearch PersonnelResolutionReverse TranscriptionRoleSchwann CellsSensorineural Hearing LossSensorySensory HairSignal TransductionStructureSynapsesSystemTestingTractionTransgenesTransgenic OrganismsUnited StatesUniversitiesZebrafishafferent nerveanalogaxon growthaxon regenerationaxonal pathfindingcell behaviorconfocal imagingdeafdeafnessexperimental studyfluid flowhearing impairmenthearing restorationin vivoinsightlateral linemechanical signalmodel organismnerve damageneuromastneurotrophic factorparacrinepreventprogramsreinnervationrestorationsensory mechanismsoundsupportive environmenttranscriptome sequencing
项目摘要
PROJECT SUMMARY
Loss of hearing is a prevalent sensory pathology in the United States that affects over 30 million people. A
significant proportion of deafness is attributed to sensorineural hearing loss, which often involves the damage of
afferent nerve fibers which relay auditory information from the mechanosensitive hair cells of the inner ear to the
brain. The restoration of physiologic hearing would require the regeneration of afferent fibers into the sensory
epithelium of the cochlea, followed by the reinnervation of appropriate hair cell targets. Nerve regeneration
studies in humans and other mammalian models are lacking due to the limited accessibility of the inner ear. The
zebrafish lateral line system, composed of superficial fluid-flow detecting hair cells and afferent nerve fibers,
offers a simple and accessible model of nerve regeneration. In this model, there are likely various paracrine,
juxtacrine, and neuron-autonomous signaling mechanisms working in coordination to guide axon pathfinding and
target selection. Aim 1 of this proposal will determine the molecular cues expressed by target sensory
hair cells to guide reinnervation by regenerating afferent axons of the lateral line. Following transection of
the lateral line nerve, hair cells from the zebrafish will be isolated at multiple timepoints. In these hair cells, the
expression changes of canonical and non-canonical molecular cues that may be used to attract axonal growth
cones will be quantified through transcriptome sequencing. Aim 2 will investigate the neuronal bias for
reinnervation of developmentally related hair cell populations. Although studies suggest that neurons retain
a memory for their original hair cell targets, how this memory is established or maintained is unknown. A
transgenic imaging technique will be used to label and trace clonal populations of regenerating axons following
transection of the lateral line nerve. It is hypothesized that neurons prefer reinnervating hair cells that arose from
a shared sensory placode during development. Aim 3 will reveal changes in the local physical environment
of the regenerating nerve to allow entry of individual afferent fibers into their target organ. By imaging
transgenic fish with fluorescently labeled Schwann cells and collagen, changes will be shown in Schwann cell
tracts and the epithelial basement membrane to permit entry of individual axons into the zebrafish neuromast,
which contains target hair cells. It is hypothesized that physical gaps form in Schwann cell and basement
membrane layers in close proximity to denervated hair cells to allow passage of regenerating axons branching
off the main nerve bundle. Together, these studies will elucidate the mechanisms governing afferent nerve
regeneration and the reinnervation of hair cells, which may provide insight towards restoring hearing in the
deafened human cochlea. These studies will be carried out under the direct mentorship of Dr. A. J. Hudspeth at
The Rockefeller University and within the supportive environment of the Tri-Institutional MD-PhD Program in
New York City.
项目概要
在美国,听力损失是一种普遍存在的感觉病症,影响着超过 3000 万人。一个
很大一部分耳聋是由于感音神经性听力损失造成的,这通常涉及听力损失
传入神经纤维,将听觉信息从内耳的机械敏感毛细胞传递到外耳
脑。生理听力的恢复需要传入感觉纤维的再生
耳蜗上皮细胞,然后是适当的毛细胞目标的神经支配。神经再生
由于内耳的可及性有限,因此缺乏对人类和其他哺乳动物模型的研究。这
斑马鱼侧线系统,由表面流体流动检测毛细胞和传入神经纤维组成,
提供了一种简单易行的神经再生模型。在这个模型中,可能存在各种旁分泌,
近分泌和神经元自主信号机制协调工作以指导轴突寻路和
目标选择。该提案的目标 1 将确定目标感官表达的分子线索
毛细胞通过再生侧线传入轴突来引导神经支配。横切后
斑马鱼的侧线神经、毛细胞将在多个时间点被分离。在这些毛细胞中,
可用于吸引轴突生长的规范和非规范分子线索的表达变化
视锥细胞将通过转录组测序进行量化。目标 2 将研究神经元偏差
发育相关毛细胞群的神经支配重新支配。尽管研究表明神经元保留
他们对原始毛细胞目标有记忆,但这种记忆是如何建立或维持的尚不清楚。一个
转基因成像技术将用于标记和追踪再生轴突的克隆群体
横断侧线神经。据推测,神经元更喜欢重新支配由毛细胞产生的毛细胞。
开发过程中共享的感觉基板。目标3将揭示当地物理环境的变化
再生神经以允许单个传入纤维进入其目标器官。通过成像
带有荧光标记雪旺细胞和胶原蛋白的转基因鱼,雪旺细胞会出现变化
束和上皮基底膜允许单个轴突进入斑马鱼神经丘,
其中包含目标毛细胞。假设雪旺细胞和基底中形成物理间隙
膜层靠近去神经毛细胞,允许再生轴突分支通过
脱离主神经束。这些研究将共同阐明控制传入神经的机制
毛细胞的再生和神经支配,这可能为恢复听力提供见解
聋哑的人类耳蜗。这些研究将在 A. J. Hudspeth 博士的直接指导下进行
洛克菲勒大学以及三机构医学博士-博士项目的支持环境
纽约市。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rohan Roy其他文献
Rohan Roy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
听觉剥夺及干预对前庭功能的影响及机制研究
- 批准号:82301299
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
听觉剥夺后下丘对双耳间时间差敏感度下降影响双侧耳蜗植入者声源定位的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
交叉听觉和颅骨非对称性对双侧骨传导助听声源定位的影响与机制
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
噪声暴露对听觉系统和边缘系统的神经投射影响及与耳鸣相关性研究
- 批准号:82071060
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
非匀速听觉节律适应对后续听觉节律加工的影响及其认知神经机制
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
Determining reliability and efficacy of intraoperative sensors to reduce structural damage during cochlear implantation
确定术中传感器的可靠性和有效性,以减少人工耳蜗植入期间的结构损伤
- 批准号:
10760827 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Individualized Profiles of Sensorineural Hearing Loss from Non-Invasive Biomarkers of Peripheral Pathology
周围病理学非侵入性生物标志物的感音神经性听力损失个体化概况
- 批准号:
10827155 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Place and Time Processing of Pitch in the Context of Cochlear Dysfunction
耳蜗功能障碍背景下音调的地点和时间处理
- 批准号:
10680120 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Age-dependent plasticity of central auditory synapses
中枢听觉突触的年龄依赖性可塑性
- 批准号:
10496286 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别: