Modelling structural and functional heterogeneity in heart failure reveals arrhythmic impact
心力衰竭的结构和功能异质性建模揭示了心律失常的影响
基本信息
- 批准号:10199780
- 负责人:
- 金额:$ 39.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAddressAffectAnti-Arrhythmia AgentsArrhythmiaBloodCalciumCardiacCause of DeathCell membraneCellsComputer ModelsCoupledCouplingElectrophysiology (science)ExhibitsFeedbackFrequenciesGap JunctionsGoalsHeartHeart failureHeterogeneityHot SpotIndividualIon ChannelIonsKnowledgeLeadLinkMeasuresModelingMolecularMovementMuscle CellsOrganOutcomePathologicPhosphorylationPhysiologicalPost-Translational Protein ProcessingProcessPropertyPumpRegulationRyanodine Receptor Calcium Release ChannelSafetySourceStructural ModelsStructureTechniquesTestingTimeTissuesTravelUnited StatesVariantVentricularVentricular FibrillationVentricular Premature ComplexesWorkbasecalmodulin-dependent protein kinase IIcomplex biological systemsdriving forcedrug developmentexperimental studygene therapyinnovationinsightmathematical analysismathematical modelnovel therapeutic interventionoxidationphospholambanrecruitreuptakesudden cardiac deaththeoriesuptake
项目摘要
PROJECT SUMMARY
The heart is a highly complex biological system. The overall goal of this project is to use multiscale computational
modeling of the heart from the molecular level to the organ level to identify the pro-arrhythmic effects of structural
and functional heterogeneity and elucidate molecular and ionic mechanisms of calcium (Ca2+) waves, delayed
afterdepolarizations (DADs), premature ventricular contractions (PVCs), and thus ventricular fibrillation (VF). A
key outcome will be to provide physiological bases for antiarrhythmic drug development, gene therapies, and
novel therapeutic strategies. The project builds on our recent discoveries 1) heterogeneous cell-to-cell coupling
promotes triggered arrhythmias at the tissue scale; 2) heterogeneous ryanodine receptor (RyR) distribution
promotes arrhythmogenic Ca2+ sparks and waves at the subcellular scale. The work proposed here is aimed
at bridging the knowledge gap between the tissue scale arrhythmia mechanisms and the subcellular scale
arrhythmia mechanisms utilizing multiscale computational modeling and the state-of-the-art experimental
approaches to measure detailed heterogeneity in the heart. Aim #1 is to establish link between RyR properties
and subcellular Ca2+ dynamics. To do this, we will extend this study and investigate heart failure (HF) cells, which
are supposed to be more heterogeneous. We will measure RyR distributions in normal and HF cells and build
the physiological and pathological models to test our hypothesis that heterogeneous RyR distribution promotes
Ca2+ waves, DADs, PVCs, and thus focal arrhythmias. Key questions that we will address in Aim #1 are: 1) how
RyR cluster size and spatial arrangements of RyRs at the cleft space affect Ca2+ sparks; 2) how RyR cluster
distribution in the cell promotes arrhythmogenic Ca2+ waves. RyR gating, and thus Ca2+ sparks and waves, are
also influenced by posttranslational modifications (PTMs). Aim #2 is to test the hypothesis that PTMs further
increase heterogeneous Ca2+ transients interacting with structural RyR heterogeneity. SERCA reuptake is
another key player in the Ca2+ cycling. Increasing SERCA pump activity increases SR Ca2+ load, which promotes
wave propagation. At the same time, increasing SERCA pump activity reduces cytosolic Ca2+ transients, which
suppresses wave propagation. In Aim #3, we test the hypothesis that increasing SERCA-pump function has a
biphasic effect on propensity of arrhythmogenic Ca2+ waves. When Ca2+ waves occur, they depolarize the cell
membrane and can lead to triggered activity in tissue. If cells are well-coupled, depolarization will be immediately
absorbed by surrounding cells. However, when cell-to-cell coupling is reduced, depolarization cannot be
absorbed by surrounding cells and PVCs occur more easily. However, at the same time, reduced cell-to-cell
coupling makes wave propagation more difficult. Therefore, we hypothesize that there is an optimal cell-to-cell
coupling for PVC formation (Aim #4). The proposed work will establish a new paradigm that a few irregular Ca2+
sparks can lead to the whole heart arrhythmias when cardiac heterogeneity is increased in HF and other
pathological conditions.
项目摘要
心脏是一个高度复杂的生物系统。该项目的总体目标是使用多尺度计算
从分子水平到器官水平的心脏建模,以识别结构的促性心律失常作用
钙(Ca2+)波的功能异质性以及阐明分子和离子机制,延迟
造影后(父亲),过早的心室收缩(PVC),因此心室纤颤(VF)。一个
关键结果将是为抗心律失常药物开发,基因疗法和
新颖的治疗策略。该项目以我们最近的发现为基础1)异质细胞到细胞耦合
在组织尺度上促进心律不齐。 2)异质ryanodine受体(RYR)分布
在亚细胞尺度上促进心律失常Ca2+火花和波浪。这里提出的工作是针对的
在弥合组织尺度心律失常机制和亚细胞尺度之间的知识差距时
使用多尺度计算建模和最新实验的心律失常机制
测量心脏中详细异质性的方法。 AIM#1是在RYR属性之间建立链接
和亚细胞Ca2+动力学。为此,我们将扩展这项研究并研究心力衰竭(HF)细胞,该细胞
应该更异构。我们将在正常和HF细胞中测量RYR分布并构建
生理和病理模型,以检验我们的假设,即异质RYR分布促进
Ca2+波,爸爸,PVC,因此局灶性心律不齐。我们将在AIM#1中解决的关键问题是:1)
RYR簇的大小和Ryrs在裂口空间上的空间排列会影响Ca2+火花; 2)RYR群集如何
细胞中的分布促进心律失常Ca2+波。 Ryr Gating,因此Ca2+火花和波浪是
也受翻译后修饰(PTM)的影响。目标#2是检验PTM的假设
增加与结构RYR异质性相互作用的异质Ca2+瞬态。 Serca Reuteake是
CA2+骑自行车中的另一个关键球员。增加SERCA泵活动会增加SR Ca2+负载,从而促进
波传播。同时,增加SERCA泵活性会减少胞质Ca2+瞬变,这
抑制波传播。在AIM#3中,我们检验了以下假设:增加Serca-Pump功能具有
双相对心律失常Ca2+波倾向的影响。当发生Ca2+波时,它们会使细胞去极化
膜,可能导致组织中的活性。如果细胞耦合良好,将立即去极化
被周围细胞吸收。但是,当细胞对细胞耦合减少时,去极化不能
周围细胞和PVC吸收更容易发生。但是,同时减少了细胞到细胞
耦合使波传播更加困难。因此,我们假设有一个最佳的细胞到细胞
耦合PVC组(AIM#4)。拟议的工作将确定一些不规则Ca2+的新范式
当心脏异质性增加时,火花会导致心脏心律不齐
病理状况。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Donald M Bers其他文献
The Difference of Calmodulin-Ryanodine Receptor Affinity Between N-terminal, Central and C-terminal RyR2-CPVT Knock-in Mice
N端、中央端和C端RyR2-CPVT敲入小鼠钙调蛋白-兰尼定受体亲和力的差异
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Hitoshi Uchinoumi;Xiaoqiong Dong;Ivanita Stefanon;Mena Said;Rogerio Faustino;Razvan L Cornea;Univ of Minnesota;Xander H.t. Wehrens; Takeshi Yamamoto;Masafumi Yano;Donald M Bers - 通讯作者:
Donald M Bers
Donald M Bers的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Donald M Bers', 18)}}的其他基金
Systems Approach to Understanding Cardiovascular Disease and Arrhythmias - Cell diversity in the cardiovascular system, cell-autonomous and cell-cell signaling
了解心血管疾病和心律失常的系统方法 - 心血管系统中的细胞多样性、细胞自主和细胞间信号传导
- 批准号:
10386681 - 财政年份:2021
- 资助金额:
$ 39.25万 - 项目类别:
Systems Approach to Understanding Cardiac Arrhythmias Mechanisms
了解心律失常机制的系统方法
- 批准号:
9763307 - 财政年份:2019
- 资助金额:
$ 39.25万 - 项目类别:
Modelling structural and functional heterogeneity in heart failure reveals arrhythmic impact
心力衰竭的结构和功能异质性建模揭示了心律失常的影响
- 批准号:
10449125 - 财政年份:2019
- 资助金额:
$ 39.25万 - 项目类别:
CaMKII activation and regulation in adult cardiac myocytes
成人心肌细胞中 CaMKII 的激活和调节
- 批准号:
10687251 - 财政年份:2018
- 资助金额:
$ 39.25万 - 项目类别:
High-Throughput Screens to Discover Novel Inhibitors of Leaky RyR2 for Heart Failure Therapy
高通量筛选发现用于心力衰竭治疗的漏性 RyR2 新型抑制剂
- 批准号:
10064096 - 财政年份:2018
- 资助金额:
$ 39.25万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Genetically-Encoded, Non-Invasive and Wireless Modulation of Calcium Dynamics in Astrocytes With Spatiotemporal Precision and Depth
具有时空精度和深度的星形胶质细胞钙动态的基因编码、非侵入性无线调节
- 批准号:
10562265 - 财政年份:2023
- 资助金额:
$ 39.25万 - 项目类别:
Investigating the interactions of auxillary subunits with the Nav1.5 channel
研究辅助亚基与 Nav1.5 通道的相互作用
- 批准号:
10678156 - 财政年份:2023
- 资助金额:
$ 39.25万 - 项目类别:
BRITE-Eye: An integrated discovery engine for CNS therapeutic targets driven by high throughput genetic screens, functional readouts in human neurons, and machine learning
BRITE-Eye:由高通量遗传筛选、人类神经元功能读数和机器学习驱动的中枢神经系统治疗靶点的集成发现引擎
- 批准号:
10699137 - 财政年份:2023
- 资助金额:
$ 39.25万 - 项目类别: