Improving comparative effectiveness research through electronic health records continuity cohorts
通过电子健康记录连续性队列改进比较有效性研究
基本信息
- 批准号:9983157
- 负责人:
- 金额:$ 31.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsCaringClassificationClinicalClinical DataClinical ResearchClinical TrialsClinics and HospitalsComparative Effectiveness ResearchContinuity of Patient CareDataDatabasesDrug usageEffectivenessElectronic Health RecordEpidemiologyExtravasationGoldGrowthHealthHealthcareHealthcare SystemsInformation SystemsKnowledgeLinkMedicalMedicareMedicare claimMethodsOutcomePharmaceutical PreparationsPopulation StudyProviderProxyRecommendationRecordsResearchResearch PersonnelSafetySamplingSourceStructureSystemTherapeuticWorkbasecare providerscare systemscohortcomorbiditycomparativecomparative effectiveness studydata standardsimprovedmedication safetyolder patientpatient health informationprogramsrandomized trialroutine carestudy populationtreatment effect
项目摘要
Title: Improving comparative effectiveness research through electronic health records
continuity cohorts
PI: Joshua Lin, MD, MPH
Abstract (about 30 lines)
Epidemiologic analyses of health care data can provide critical evidence on the effectiveness and safety of
therapeutics in the routine care setting since clinical trials often exclude frail and older patients who are the
primary consumers of most medications. Electronic health record (EHR) databases contain rich clinical
information vital for many comparative effectiveness studies and have been increasingly used for drug research.
There are currently more than 50 EHR-based research networks in the US. It is thus critical to understand how
we can conduct valid comparative clinical studies with EHR data. However, other than few highly integrated
plans, most US EHR systems do not have comprehensive capture of medical encounters across the care
continuum and may miss substantial amounts of information. Exposures, co-morbidities, and health outcomes
that are recorded at a clinic or hospital outside of a given EHR system are "invisible" to the investigator,
increasing misclassification or complete omission of essential variables. While such issues are pervasive, no
prior study has ever quantified the magnitude of resultant bias and how to remedy the situation if linkage of
more information is not feasible. To address this knowledge gap, we have combined longitudinal claims data
from Medicare with EHR patient data from a large multi-center health care system as a `gold standard' setup
where the claims data comprehensively capture medical information across care settings and provider systems
and EHR provides necessary clinical data. We will (1) use these `gold standard' data to identify `EHR continuity
cohorts' for whom the EHR system captures a high proportion of all encounters and evaluate whether
misclassification/omission of a list of essential variables in the comparative effectiveness research is
substantially reduced within vs outside of the EHR continuity cohort; (2) develop strategies to identify the EHR
continuity cohort based on a set of proxy indicators available in typical EHR databases and validate the
candidate prediction rules internally in a sample within the given EHR and externally using a second EHR
system that is also linked to Medicare claims data; (3) assess research validity and generalizability in the EHR
continuity cohorts in several empirical studies; and (4) Develop structured recommendation on how to conduct
comparative effectiveness research using high-validity EHR continuity cohorts in an EHR system without
linked claims data and make our program public available to facilitate future research using EHR-based
research networks.
标题:通过电子健康记录提高比较有效性研究
连续性队列
PI:Joshua Lin,医学博士,MPH
摘要(大约30行)
医疗保健数据的流行病学分析可以提供有关有效性和安全性的关键证据
在常规护理环境中的治疗剂,因为临床试验通常排除脆弱的患者,而老年患者则是
大多数药物的主要消费者。电子健康记录(EHR)数据库包含丰富的临床
信息对于许多比较有效性研究至关重要,并且越来越多地用于药物研究。
目前,美国有50多个基于EHR的研究网络。因此,了解如何
我们可以使用EHR数据进行有效的比较临床研究。但是,除了少数高度集成
计划,大多数美国EHR系统没有全面捕获整个护理中的医疗遭遇
连续体,可能会错过大量信息。暴露,合并症和健康成果
在给定EHR系统以外的诊所或医院记录的研究人员“看不见”
增加错误分类或完全省略基本变量。虽然这些问题无处不在,但没有
先前的研究曾经量化了由此产生的偏差的幅度以及如何解决情况
更多信息是不可行的。为了解决这个知识差距,我们结合了纵向索赔数据
从大型多中心医疗保健系统的Medicare和EHR患者数据作为“黄金标准”设置
索赔数据在跨护理设置和提供商系统中全面捕获医疗信息的位置
EHR提供必要的临床数据。我们将(1)使用这些“黄金标准”数据来识别EHR连续性
EHR系统捕获了所有相遇的很大比例,并评估是否评估是否
在比较有效性研究中,错误分类/省略基本变量列表是
在EHR连续性队列外的VS内大大降低了; (2)制定识别EHR的策略
基于典型EHR数据库中可用的一组代理指标的连续性队列并验证
在给定的EHR内的样本中内部的候选预测规则,并在外部使用第二个EHR
也链接到Medicare索赔数据的系统; (3)评估EHR的研究有效性和概括性
在几项实证研究中的连续性队列; (4)开发有关如何进行的结构化建议
使用高效率EHR连续性在没有EHR系统中的比较有效性研究
链接索赔数据,并使我们的计划公开以促进未来的研究使用基于EHR的研究
研究网络。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Longitudinal Data Discontinuity in Electronic Health Records and Consequences for Medication Effectiveness Studies.
- DOI:10.1002/cpt.2400
- 发表时间:2022-01
- 期刊:
- 影响因子:6.7
- 作者:Joshua Lin K;Jin Y;Gagne J;Glynn RJ;Murphy SN;Tong A;Schneeweiss S
- 通讯作者:Schneeweiss S
An algorithm to predict data completeness in oncology electronic medical records for comparative effectiveness research.
一种预测肿瘤电子病历数据完整性的算法,用于比较有效性研究。
- DOI:10.1016/j.annepidem.2022.07.007
- 发表时间:2022
- 期刊:
- 影响因子:5.6
- 作者:Merola,David;Schneeweiss,Sebastian;Schrag,Deborah;Lii,Joyce;Lin,KueiyuJoshua
- 通讯作者:Lin,KueiyuJoshua
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOSHUA K LIN其他文献
JOSHUA K LIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOSHUA K LIN', 18)}}的其他基金
A targeted analytical framework to optimize posthospitalization delirium pharmacotherapy in patients with Alzheimers disease and related dementias
优化阿尔茨海默病和相关痴呆患者出院后谵妄药物治疗的有针对性的分析框架
- 批准号:
10634940 - 财政年份:2023
- 资助金额:
$ 31.95万 - 项目类别:
Deprescribing antipsychotics in patients with Alzheimers disease and related dementias and behavioral disturbance in skilled nursing facilities
在熟练护理机构中取消阿尔茨海默病及相关痴呆症和行为障碍患者的抗精神病药物处方
- 批准号:
10634934 - 财政年份:2023
- 资助金额:
$ 31.95万 - 项目类别:
Effectiveness and Safety of Transcatheter Left Atrial Appendage Occlusion vs. Anticoagulation in Older Adults with Atrial Fibrillation and Alzheimer's Disease and Related dementias
经导管左心耳封堵术与抗凝治疗对患有心房颤动、阿尔茨海默病及相关痴呆症的老年人的有效性和安全性
- 批准号:
10672458 - 财政年份:2022
- 资助金额:
$ 31.95万 - 项目类别:
Effectiveness and Safety of Transcatheter Left Atrial Appendage Occlusion vs. Anticoagulation in Older Adults with Atrial Fibrillation and Alzheimer's Disease and Related dementias
经导管左心耳封堵术与抗凝治疗对患有心房颤动、阿尔茨海默病及相关痴呆症的老年人的有效性和安全性
- 批准号:
10443345 - 财政年份:2022
- 资助金额:
$ 31.95万 - 项目类别:
Developing scalable algorithms to incorporate unstructured electronic health records for causal inference based on real-world data
开发可扩展的算法以合并非结构化电子健康记录,以基于真实世界数据进行因果推断
- 批准号:
10372142 - 财政年份:2020
- 资助金额:
$ 31.95万 - 项目类别:
Developing scalable algorithms to incorporate unstructured electronic health records for causal inference based on real-world data
开发可扩展的算法以合并非结构化电子健康记录,以基于真实世界数据进行因果推断
- 批准号:
10581591 - 财政年份:2020
- 资助金额:
$ 31.95万 - 项目类别:
Developing dynamic prognostic and risk-stratification models for informing prescribing decisions in older adults with Coronavirus Disease 2019
开发动态预后和风险分层模型,为患有 2019 年冠状病毒病的老年人的处方决策提供信息
- 批准号:
10189838 - 财政年份:2019
- 资助金额:
$ 31.95万 - 项目类别:
Improving comparative effectiveness research through electronic health records continuity cohorts
通过电子健康记录连续性队列改进比较有效性研究
- 批准号:
9766389 - 财政年份:2017
- 资助金额:
$ 31.95万 - 项目类别:
Improving comparative effectiveness research through electronic health records continuity cohorts
通过电子健康记录连续性队列改进比较有效性研究
- 批准号:
9365420 - 财政年份:2017
- 资助金额:
$ 31.95万 - 项目类别:
相似国自然基金
地表与大气层顶短波辐射多分量一体化遥感反演算法研究
- 批准号:42371342
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
高速铁路柔性列车运行图集成优化模型及对偶分解算法
- 批准号:72361020
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
随机密度泛函理论的算法设计和分析
- 批准号:12371431
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于全息交通数据的高速公路大型货车运行风险识别算法及主动干预方法研究
- 批准号:52372329
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
高效非完全信息对抗性团队博弈求解算法研究
- 批准号:62376073
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Previvors Recharge: A Resilience Program for Cancer Previvors
癌症预防者恢复活力计划:癌症预防者恢复力计划
- 批准号:
10698965 - 财政年份:2023
- 资助金额:
$ 31.95万 - 项目类别:
Mixed methods examination of warning signs within 24 hours of suicide attempt in hospitalized adults
住院成人自杀未遂 24 小时内警告信号的混合方法检查
- 批准号:
10710712 - 财政年份:2023
- 资助金额:
$ 31.95万 - 项目类别:
HEAR-HEARTFELT (Identifying the risk of Hospitalizations or Emergency depARtment visits for patients with HEART Failure in managed long-term care through vErbaL communicaTion)
倾听心声(通过口头交流确定长期管理护理中的心力衰竭患者住院或急诊就诊的风险)
- 批准号:
10723292 - 财政年份:2023
- 资助金额:
$ 31.95万 - 项目类别:
Traumatic Brain Injury Anti-Seizure Prophylaxis in the Medicare Program
医疗保险计划中的创伤性脑损伤抗癫痫预防
- 批准号:
10715238 - 财政年份:2023
- 资助金额:
$ 31.95万 - 项目类别:
Enhanced Medication Management to Control ADRD Risk Factors Among African Americans and Latinos
加强药物管理以控制非裔美国人和拉丁裔的 ADRD 风险因素
- 批准号:
10610975 - 财政年份:2023
- 资助金额:
$ 31.95万 - 项目类别: