Data Science Core
数据科学核心
基本信息
- 批准号:9983203
- 负责人:
- 金额:$ 43.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-25 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmic SoftwareAlgorithmsArchivesBayesian ModelingBehaviorBig DataBiologicalBrainCloud ComputingCodeCollaborationsCommunitiesComplexComputer softwareComputersCore FacilityCustomDataData AnalysesData EngineeringData ScienceData Science CoreData SetData Storage and RetrievalDevelopmentDimensionsDocumentationEcosystemEducational process of instructingEmerging TechnologiesEngineeringEnsureExperimental DesignsHigh Performance ComputingImageImaging DeviceIndividualInformation RetrievalInfrastructureInstitutesLaboratoriesLibrariesLinkLocationMachine LearningMeasuresMetadataMethodologyMethodsMindModelingModernizationMotor PathwaysMusNatureNetwork InfrastructureNeural Network SimulationNeurosciencesNeurosciences ResearchOutcomeOutputPerformancePostdoctoral FellowProcessProtocols documentationPublicationsResearchResearch PersonnelResourcesRiskSecureServicesSpeedStandardizationStatistical Data InterpretationStatistical MethodsSupervisionSystemTechniquesTechnologyTestingTime Series AnalysisTrainingTraining Supportalgorithm developmentawakebrain behaviorcloud basedcluster computingcomputer infrastructurecostdata analysis pipelinedata archivedata curationdata formatdata managementdata modelingdata pipelinedata sharingdensitydesigndissemination researchexperienceexperimental studyfaculty supportgraduate studenthigh riskimprovedindexinginstrumentationmembermethod developmentmodel buildingmodel developmentmotor controlnovelpedagogical contentpower analysisprogramsprototyperelating to nervous systemskillsstatisticssuccessvirtual
项目摘要
Abstract (30 lines)
As we seek to unlock how the brain generates behavior, measuring what the brain is doing as we observe the
behaviors it generates, and building models that might mimic the process are critical. As tools for imaging and
recording brain activity and behavior improve, and the complexity of our models and computations increase, so
does the density and diversity of our measured datasets. Handling these much data is an intellectual challenge
in itself, while arguably even more data will be needed if we are to understand the relation between brain and
behavior. The projects within the U19 span a wide range of different approaches to dissect the motor pathway
in the awake, behaving mouse. The methodologies to be used, supported by our Advanced Imaging and
Instrumentation core, are almost uniformly prototype systems, not available off the shelf, and therefore will
provide both unprecedented data, and present new challenges for standardization, analysis and information
extraction. To support these activities, our data science resource core will draw upon the expertise of an
exceptional interdisciplinary team with expertise in computer infrastructure, analysis and modeling, data
science, statistics, machine learning and the teaching and training of data science methods. With this team, we
hope to build a model data pipeline that is scalable, robust and capable of addressing immediate needs and
deficiencies, while establishing best practices moving forward. The location of the U19 project within
Columbia's new Zuckerman Mind Brain Behavior institute will further enhance the impact of this effort, firstly
through our ability to establish shard, state of the art infrastructure optimized for our framework and pipeline,
and second by enabling us to establish new standards that can be scaled to serve the whole institute and
beyond.
Our core will have 3 main components: 1) Establishing the hardware and network infrastructure that will
enable centralized, indexed, secure yet easily shared data storage and high-power analysis from anywhere.
This infrastructure will also include direct access to analyze host data on our high performance cluster
resources and through cloud computing. 2) Developing, tracking, modularizing and sharing novel algorithms
and modeling approaches centrally, enabling version control as well as indexing, pooling and sharing of
processed data. 3) Establishing a core effort focusing on training and day to day support of researchers
needing to establish skills and expertise in big data analysis, modeling and statistical methods. This latter effort
recognizes that data analysis becomes a bottleneck when users lack programming skills, and analytical
experience or simply confidence in their ability to develop their own experimental designs and analyze their
own data. We plan to share and disseminate all aspects of our core activities, from best practices and
hardware configurations, raw and processed data, algorithms and models and our new pedagogical
approaches and successes.
摘要(30行)
当我们寻求解锁大脑如何产生行为时,衡量大脑在观察到
它产生的行为,建立可能模仿过程的模型至关重要。作为成像和
记录大脑活动和行为的改善,我们的模型和计算的复杂性增加,因此
我们测得的数据集的密度和多样性是否存在。处理这些大量数据是一个智力挑战
本身,如果我们要了解大脑和
行为。 U19中的项目涵盖了各种不同的方法来剖析电路通路
在清醒中,行为鼠标。由我们的高级成像和
仪器核心几乎是原型系统,无法在架子上使用,因此将
提供前所未有的数据,并提出标准化,分析和信息的新挑战
萃取。为了支持这些活动,我们的数据科学资源核心将借鉴
具有计算机基础架构,分析和建模,数据的专业知识的特殊跨学科团队
科学,统计,机器学习以及数据科学方法的教学和培训。与这个团队一起
希望构建一条可扩展,强大且能够满足即时需求的模型数据管道和
缺陷,同时建立最佳实践前进。 U19项目的位置
哥伦比亚的新扎克曼思维大脑行为研究所将进一步增强这项工作的影响,首先
通过我们建立碎片的能力,为我们的框架和管道优化了最新基础设施的状态,
其次,通过使我们能够建立可以扩展为整个研究所服务的新标准和
超过。
我们的核心将有3个主要组成部分:1)建立硬件和网络基础架构
从任何地方启用集中式,索引,安全但很容易共享的数据存储和高功率分析。
该基础架构还将包括直接访问我们的高性能集群中的主机数据
资源和通过云计算。 2)开发,跟踪,模块化和共享新型算法
以及建模方法集中,启用版本控制以及索引,汇总和共享
处理的数据。 3)建立核心努力,专注于培训和研究人员的日常支持
需要在大数据分析,建模和统计方法中建立技能和专业知识。后者的努力
认识到当用户缺乏编程技能和分析时,数据分析成为瓶颈
经验或仅对他们开发自己的实验设计的能力充满信心并分析他们的
自己的数据。我们计划分享和传播我们核心活动的各个方面,最佳实践以及
硬件配置,原始数据和处理的数据,算法和模型以及我们的新教学法
方法和成功。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rajendra Bose其他文献
Rajendra Bose的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rajendra Bose', 18)}}的其他基金
相似国自然基金
高吞吐低时延的多元LDPC码译码算法及其软件架构研究
- 批准号:62301029
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
深度学习中的流形优化问题:算法设计与求解软件包的开发
- 批准号:12301408
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
能量一阶导数的GPU算法和异构并行计算:WESP软件的发展和向国产异构平台的移植
- 批准号:22373112
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
机理与数据耦合驱动的AI赋能工业软件理论与算法
- 批准号:52335001
- 批准年份:2023
- 资助金额:230 万元
- 项目类别:重点项目
面向量子模拟算法的量子软件优化技术研究
- 批准号:62302395
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Brain Digital Slide Archive: An Open Source Platform for data sharing and analysis of digital neuropathology
Brain Digital Slide Archive:数字神经病理学数据共享和分析的开源平台
- 批准号:
10735564 - 财政年份:2023
- 资助金额:
$ 43.69万 - 项目类别:
An acquisition and analysis pipeline for integrating MRI and neuropathology in TBI-related dementia and VCID
用于将 MRI 和神经病理学整合到 TBI 相关痴呆和 VCID 中的采集和分析流程
- 批准号:
10810913 - 财政年份:2023
- 资助金额:
$ 43.69万 - 项目类别:
Wearable Wireless Respiratory Monitoring System that Detects and Predicts Opioid Induced Respiratory Depression
可穿戴无线呼吸监测系统,可检测和预测阿片类药物引起的呼吸抑制
- 批准号:
10784983 - 财政年份:2023
- 资助金额:
$ 43.69万 - 项目类别:
Leveraging artificial intelligence/machine learning-based technology to overcome specialized training and technology barriers for the diagnosis and prognostication of colorectal cancer in Africa
利用基于人工智能/机器学习的技术克服非洲结直肠癌诊断和预测的专业培训和技术障碍
- 批准号:
10712793 - 财政年份:2023
- 资助金额:
$ 43.69万 - 项目类别:
A visualization interface for BRAIN single cell data, integrating transcriptomics, epigenomics and spatial assays
BRAIN 单细胞数据的可视化界面,集成转录组学、表观基因组学和空间分析
- 批准号:
10643313 - 财政年份:2023
- 资助金额:
$ 43.69万 - 项目类别: