Data Science Core
数据科学核心
基本信息
- 批准号:9983203
- 负责人:
- 金额:$ 43.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-25 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmic SoftwareAlgorithmsArchivesBayesian ModelingBehaviorBig DataBiologicalBrainCloud ComputingCodeCollaborationsCommunitiesComplexComputer softwareComputersCore FacilityCustomDataData AnalysesData EngineeringData ScienceData Science CoreData SetData Storage and RetrievalDevelopmentDimensionsDocumentationEcosystemEducational process of instructingEmerging TechnologiesEngineeringEnsureExperimental DesignsHigh Performance ComputingImageImaging DeviceIndividualInformation RetrievalInfrastructureInstitutesLaboratoriesLibrariesLinkLocationMachine LearningMeasuresMetadataMethodologyMethodsMindModelingModernizationMotor PathwaysMusNatureNetwork InfrastructureNeural Network SimulationNeurosciencesNeurosciences ResearchOutcomeOutputPerformancePostdoctoral FellowProcessProtocols documentationPublicationsResearchResearch PersonnelResourcesRiskSecureServicesSpeedStandardizationStatistical Data InterpretationStatistical MethodsSupervisionSystemTechniquesTechnologyTestingTime Series AnalysisTrainingTraining Supportalgorithm developmentawakebrain behaviorcloud basedcluster computingcomputer infrastructurecostdata analysis pipelinedata archivedata curationdata formatdata managementdata modelingdata pipelinedata sharingdensitydesigndissemination researchexperienceexperimental studyfaculty supportgraduate studenthigh riskimprovedindexinginstrumentationmembermethod developmentmodel buildingmodel developmentmotor controlnovelpedagogical contentpower analysisprogramsprototyperelating to nervous systemskillsstatisticssuccessvirtual
项目摘要
Abstract (30 lines)
As we seek to unlock how the brain generates behavior, measuring what the brain is doing as we observe the
behaviors it generates, and building models that might mimic the process are critical. As tools for imaging and
recording brain activity and behavior improve, and the complexity of our models and computations increase, so
does the density and diversity of our measured datasets. Handling these much data is an intellectual challenge
in itself, while arguably even more data will be needed if we are to understand the relation between brain and
behavior. The projects within the U19 span a wide range of different approaches to dissect the motor pathway
in the awake, behaving mouse. The methodologies to be used, supported by our Advanced Imaging and
Instrumentation core, are almost uniformly prototype systems, not available off the shelf, and therefore will
provide both unprecedented data, and present new challenges for standardization, analysis and information
extraction. To support these activities, our data science resource core will draw upon the expertise of an
exceptional interdisciplinary team with expertise in computer infrastructure, analysis and modeling, data
science, statistics, machine learning and the teaching and training of data science methods. With this team, we
hope to build a model data pipeline that is scalable, robust and capable of addressing immediate needs and
deficiencies, while establishing best practices moving forward. The location of the U19 project within
Columbia's new Zuckerman Mind Brain Behavior institute will further enhance the impact of this effort, firstly
through our ability to establish shard, state of the art infrastructure optimized for our framework and pipeline,
and second by enabling us to establish new standards that can be scaled to serve the whole institute and
beyond.
Our core will have 3 main components: 1) Establishing the hardware and network infrastructure that will
enable centralized, indexed, secure yet easily shared data storage and high-power analysis from anywhere.
This infrastructure will also include direct access to analyze host data on our high performance cluster
resources and through cloud computing. 2) Developing, tracking, modularizing and sharing novel algorithms
and modeling approaches centrally, enabling version control as well as indexing, pooling and sharing of
processed data. 3) Establishing a core effort focusing on training and day to day support of researchers
needing to establish skills and expertise in big data analysis, modeling and statistical methods. This latter effort
recognizes that data analysis becomes a bottleneck when users lack programming skills, and analytical
experience or simply confidence in their ability to develop their own experimental designs and analyze their
own data. We plan to share and disseminate all aspects of our core activities, from best practices and
hardware configurations, raw and processed data, algorithms and models and our new pedagogical
approaches and successes.
摘要(30行)
当我们试图解开大脑如何产生行为时,在观察大脑行为时测量大脑正在做什么
它生成的行为以及构建可能模仿该过程的模型至关重要。作为成像和
记录大脑活动和行为的能力得到改善,我们的模型和计算的复杂性也随之增加,所以
我们测量的数据集的密度和多样性。处理如此多的数据是一项智力挑战
就其本身而言,如果我们要了解大脑和大脑之间的关系,可以说需要更多的数据
行为。 U19 内的项目涵盖了多种不同的方法来剖析运动通路
在清醒、行为正常的老鼠中。我们的高级成像和支持所使用的方法
仪器核心几乎都是原型系统,不是现成的,因此将
提供了前所未有的数据,并对标准化、分析和信息提出了新的挑战
萃取。为了支持这些活动,我们的数据科学资源核心将利用专家的专业知识
杰出的跨学科团队,拥有计算机基础设施、分析和建模、数据方面的专业知识
科学、统计学、机器学习以及数据科学方法的教学和培训。有了这个团队,我们
希望建立一个可扩展、稳健且能够满足即时需求的模型数据管道
缺陷,同时建立前进的最佳实践。 U19项目所在地
哥伦比亚新成立的祖克曼心脑行为研究所将进一步增强这项努力的影响,首先
通过我们建立分片的能力,最先进的基础设施针对我们的框架和管道进行了优化,
其次,使我们能够建立新的标准,这些标准可以扩展以服务于整个研究所和
超过。
我们的核心将包含 3 个主要组成部分:1)建立硬件和网络基础设施
实现随时随地的集中式、索引式、安全且轻松共享的数据存储和高功率分析。
该基础设施还将包括直接访问以分析我们的高性能集群上的主机数据
资源并通过云计算。 2)开发、跟踪、模块化和共享新颖算法
集中建模方法,实现版本控制以及索引、池化和共享
处理过的数据。 3)建立专注于研究人员培训和日常支持的核心工作
需要建立大数据分析、建模和统计方法方面的技能和专业知识。后者的努力
认识到当用户缺乏编程技能时数据分析就会成为瓶颈,并且分析
经验或只是对他们开发自己的实验设计和分析他们的能力的信心
自己的数据。我们计划分享和传播我们核心活动的各个方面,从最佳实践和
硬件配置、原始和处理后的数据、算法和模型以及我们的新教学法
方法和成功。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rajendra Bose其他文献
Rajendra Bose的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rajendra Bose', 18)}}的其他基金
相似国自然基金
高吞吐低时延的多元LDPC码译码算法及其软件架构研究
- 批准号:62301029
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
机理与数据耦合驱动的AI赋能工业软件理论与算法
- 批准号:52335001
- 批准年份:2023
- 资助金额:230 万元
- 项目类别:重点项目
能量一阶导数的GPU算法和异构并行计算:WESP软件的发展和向国产异构平台的移植
- 批准号:22373112
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向量子模拟算法的量子软件优化技术研究
- 批准号:62302395
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于E级超算的裂隙岩体三维数值流形法高性能算法研究及软件开发
- 批准号:
- 批准年份:2022
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Brain Digital Slide Archive: An Open Source Platform for data sharing and analysis of digital neuropathology
Brain Digital Slide Archive:数字神经病理学数据共享和分析的开源平台
- 批准号:
10735564 - 财政年份:2023
- 资助金额:
$ 43.69万 - 项目类别:
An acquisition and analysis pipeline for integrating MRI and neuropathology in TBI-related dementia and VCID
用于将 MRI 和神经病理学整合到 TBI 相关痴呆和 VCID 中的采集和分析流程
- 批准号:
10810913 - 财政年份:2023
- 资助金额:
$ 43.69万 - 项目类别:
Wearable Wireless Respiratory Monitoring System that Detects and Predicts Opioid Induced Respiratory Depression
可穿戴无线呼吸监测系统,可检测和预测阿片类药物引起的呼吸抑制
- 批准号:
10784983 - 财政年份:2023
- 资助金额:
$ 43.69万 - 项目类别:
Leveraging artificial intelligence/machine learning-based technology to overcome specialized training and technology barriers for the diagnosis and prognostication of colorectal cancer in Africa
利用基于人工智能/机器学习的技术克服非洲结直肠癌诊断和预测的专业培训和技术障碍
- 批准号:
10712793 - 财政年份:2023
- 资助金额:
$ 43.69万 - 项目类别:
A visualization interface for BRAIN single cell data, integrating transcriptomics, epigenomics and spatial assays
BRAIN 单细胞数据的可视化界面,集成转录组学、表观基因组学和空间分析
- 批准号:
10643313 - 财政年份:2023
- 资助金额:
$ 43.69万 - 项目类别: