Methods and Software for Large-Scale Gene-Environment Interaction Studies
大规模基因-环境相互作用研究的方法和软件
基本信息
- 批准号:9978093
- 负责人:
- 金额:$ 79.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAgeAgingAlgorithmsAll of Us Research ProgramAspirinBenchmarkingBloodClinical DataCloud ComputingCollaborationsCommunitiesComplexComputational algorithmComputer softwareDataData CommonsDiseaseEnvironmentEnvironmental ExposureEpidemiologyEthnic OriginEtiologyFAIR principlesFoundationsFutureGenesGeneticGenetic VariationGenome ScanGenomicsHabitsHeartHeart DiseasesHematological DiseaseInterventionLife StyleLungLung diseasesMethodsModelingNational Heart, Lung, and Blood InstituteObesityPharmacologyPhysiologicalPlayPrecision HealthPreventionPrevention strategyProceduresRaceResearchResearch DesignResearch PersonnelResourcesRisk FactorsRoleSample SizeSamplingSchemeSleep DisordersSmokingStatistical MethodsStatistical ModelsTechnologyTestingToxinTrans-Omics for Precision MedicineUnited States National Institutes of HealthVariantVeteransWeightanalysis pipelineanalytical toolbasebiobankbiomedical resourcecardiometabolismcloud basedcohortcostdisorder preventiondisorder riskflexibilityfunctional genomicsgene environment interactiongenetic architecturegenetic associationgenetic variantgenome sequencinggenome wide association studygenomic datagenomic epidemiologyhealth disparityhealth managementhuman diseaseinsightnon-geneticopen sourcepersonalized interventionphenotypic dataprecision medicineprogramsracial and ethnic disparitiesrare variantscale upsexsoftware developmenttooltraittreatment effecttreatment strategyuser friendly softwareuser-friendlywhole genomeworking group
项目摘要
PROJECT SUMMARY/ABSTRACT
Complex human diseases and related quantitative traits are the interplay of many risk factors, including genetic
and environmental components. Gene-environment interaction studies are a general framework that can be used
to identify genetic variations that modify environmental, physiological, lifestyle, or treatment effects, as well as
those contributing to age, sex, racial/ethnic disparities on complex traits. Moreover, genetic association studies
accounting for gene-environment interactions are conducted to enhance our understandings on the genetic
architecture of complex diseases by allowing for different genetic effects in different exposure strata. With the
recent advances in technology and lowering costs, genetic and genomic data are being generated on very large
scales. However, commonly used statistical software programs for gene-environment interaction studies were
generally developed many years ago, and their computational algorithms have not been optimized to analyze
hundreds of thousands to millions of samples from possibly complex study designs. To fill in the gap between
current and future analytical needs in large-scale gene-environment interaction studies and current analytical
solutions, we plan to (Aim 1) develop efficient algorithms for common variant gene-environment interaction
analyses that scale linearly with the sample size; (Aim 2) develop new statistical tests for rare variant gene-
environment interaction analyses, in the mixed effects model framework for correlated samples; and (Aim 3)
implement proposed statistical methods and computational algorithms in open-source new software programs.
Our Aim 1 addresses current computational challenges in conducting gene-environment interaction studies in
up to millions of samples. In Aim 2, we plan to solve statistical and computational challenges in gene-environment
interaction analyses of large-scale whole genome sequencing data, accounting for relatedness, complex study
designs, as well as model misspecification. Aim 3 focuses on software development and we will deliver well-
documented and user-friendly software packages and analysis pipelines for large-scale gene-environment
interaction studies. The methods and software programs will be applied to ongoing whole genome sequencing
projects, as well as biobank-scale data, and they will significantly facilitate the use of large-scale genetic and
genomic data for gene-environment interaction studies in upcoming years to better understand the genetic basis
of complex cardio-metabolic, lung, blood, sleep diseases and their age, sex, racial/ethnic disparities, and
promote personalized disease prevention and treatment strategies in precision health research.
项目概要/摘要
复杂的人类疾病和相关的数量性状是许多危险因素相互作用的结果,包括遗传因素
和环境成分。基因-环境相互作用研究是一个可以使用的通用框架
识别改变环境、生理、生活方式或治疗效果的遗传变异,以及
那些导致年龄、性别、种族/民族复杂特征差异的因素。此外,遗传关联研究
对基因与环境相互作用的解释是为了增强我们对遗传的理解
通过允许不同暴露层中的不同遗传效应来构建复杂疾病的结构。随着
随着技术的最新进步和成本的降低,遗传和基因组数据正在非常大的范围内生成
秤。然而,用于基因-环境相互作用研究的常用统计软件程序是
一般是很多年前开发的,他们的计算算法还没有经过优化来分析
来自可能复杂的研究设计的数十万至数百万样本。填补之间的空白
大规模基因-环境相互作用研究中当前和未来的分析需求以及当前的分析
解决方案,我们计划(目标 1)开发常见变异基因-环境相互作用的有效算法
分析与样本大小成线性比例; (目标 2)针对罕见变异基因开发新的统计测试 -
在相关样本的混合效应模型框架中进行环境相互作用分析;和(目标 3)
在开源新软件程序中实施提出的统计方法和计算算法。
我们的目标 1 解决了当前在进行基因-环境相互作用研究中的计算挑战
多达数百万个样本。在目标 2 中,我们计划解决基因环境中的统计和计算挑战
大规模全基因组测序数据的相互作用分析,考虑相关性,复杂的研究
设计以及型号规格错误。目标 3 专注于软件开发,我们将提供良好的服务
用于大规模基因环境的记录和用户友好的软件包和分析管道
相互作用研究。这些方法和软件程序将应用于正在进行的全基因组测序
项目以及生物库规模的数据,它们将极大地促进大规模遗传和
未来几年用于基因-环境相互作用研究的基因组数据,以更好地了解遗传基础
复杂的心脏代谢、肺、血液、睡眠疾病及其年龄、性别、种族/民族差异,以及
在精准健康研究中推动个性化疾病预防和治疗策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Han Chen其他文献
Han Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Han Chen', 18)}}的其他基金
Methods and Software for Large-Scale Gene-Environment Interaction Studies
大规模基因-环境相互作用研究的方法和软件
- 批准号:
9816600 - 财政年份:2019
- 资助金额:
$ 79.58万 - 项目类别:
Methods and Software for Large-Scale Gene-Environment Interaction Studies
大规模基因-环境相互作用研究的方法和软件
- 批准号:
10439679 - 财政年份:2019
- 资助金额:
$ 79.58万 - 项目类别:
Methods and Software for Large-Scale Gene-Environment Interaction Studies
大规模基因-环境相互作用研究的方法和软件
- 批准号:
10670745 - 财政年份:2019
- 资助金额:
$ 79.58万 - 项目类别:
Methods and Software for Large-Scale Gene-Environment Interaction Studies
大规模基因-环境相互作用研究的方法和软件
- 批准号:
10199014 - 财政年份:2019
- 资助金额:
$ 79.58万 - 项目类别:
Statistical and Computational Methods for Large-Scale Sequencing Studies
大规模测序研究的统计和计算方法
- 批准号:
9377731 - 财政年份:2016
- 资助金额:
$ 79.58万 - 项目类别:
Statistical and Computational Methods for Large-Scale Sequencing Studies
大规模测序研究的统计和计算方法
- 批准号:
9013897 - 财政年份:2015
- 资助金额:
$ 79.58万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
An active learning framework for adaptive autism healthcare
适应性自闭症医疗保健的主动学习框架
- 批准号:
10716509 - 财政年份:2023
- 资助金额:
$ 79.58万 - 项目类别:
Mapping the Neurobiological Risks and Consequences of Alcohol Use in Adolescence and Across the Lifespan
绘制青春期和整个生命周期饮酒的神经生物学风险和后果
- 批准号:
10733406 - 财政年份:2023
- 资助金额:
$ 79.58万 - 项目类别:
Improving Age- and Cause-Specific Under-Five Mortality Rates (ACSU5MR) by Systematically Accounting Measurement Errors to Inform Child Survival Decision Making in Low Income Countries
通过系统地核算测量误差来改善特定年龄和特定原因的五岁以下死亡率 (ACSU5MR),为低收入国家的儿童生存决策提供信息
- 批准号:
10585388 - 财政年份:2023
- 资助金额:
$ 79.58万 - 项目类别:
The impact of bilingualism on cognitive reserve/resilience using socio-demographically and linguistically diverse populations
双语对社会人口和语言多样化人群的认知储备/弹性的影响
- 批准号:
10584245 - 财政年份:2023
- 资助金额:
$ 79.58万 - 项目类别:
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
- 批准号:
10590913 - 财政年份:2023
- 资助金额:
$ 79.58万 - 项目类别: