CEREBELLAR FUNCTION IN TREMOR
震颤时的小脑功能
基本信息
- 批准号:9977296
- 负责人:
- 金额:$ 33.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-25 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAffinityAgeAlcoholsAnimal ModelAreaAtaxiaBackBehaviorBinding ProteinsBody partBrainBrain regionCalcium SignalingCell physiologyCerebellar NucleiCerebellumCerebral cortexChronicDataDeep Brain StimulationDevicesDiagnosisDiseaseDisease modelDystoniaEatingElectrophysiology (science)Essential TremorExhibitsFire - disastersFrequenciesFunctional disorderGenesGeneticGenetic ModelsHealthHomologous GeneHumanITPR1 geneImpairmentInferiorInterneuronsLeadLocomotionMeasuresMotionMotorMotor CortexMovement DisordersMusMuscleMuscle functionMutant Strains MiceMutationNeuraxisNeurologicNeuronsOlives - dietaryOutputParkinson DiseasePathologicPatternPeriodicityPhysiologic pulsePhysiologyPre-Clinical ModelProcessPurkinje CellsResearchRestSignal TransductionSourceSpinocerebellar AtaxiasStructureSystemTestingThalamic structureTherapeuticTremorWalkingWireless TechnologyWorkexperimental studyhindbrainhuman modelimaging studyin vivointerdisciplinary approachmillisecondmotor function improvementmouse geneticsmouse modelmutantneuromechanismneuroregulationoptogeneticspreventreceptortherapeutic evaluation
项目摘要
PROJECT SUMMARY/ABSTRACT
Tremor is the most common movement disorder. It impairs voluntary actions by causing intense
shaking during walking, eating, and speaking. The shaking is repetitive and highly rhythmic as the
affected body parts “oscillate” back and forth. Oscillation frequency is a defining feature of tremor;
distinct tremors are found in Parkinson's disease, dystonia, and essential tremor (ET). Because
tremor disorders have a neurological basis, it implies that specific brain oscillations drive the body to
oscillate at the same frequency. However, it is still not clear where in the central nervous system the
oscillations begin, and the processes that lead to oscillations in the connected brain regions remain
unknown. In ET, which is the most prevalent form of pathological tremor, a hindbrain motor region
called the cerebellum has been heavily implicated as the major source of abnormal activity. But, how
abnormal cerebellar activity leads to oscillating motions has been challenging to test. This is largely
because of the lack of an appropriate animal model. To address this problem, we identified a mouse
genetic model that exhibits the core features of ET. We have generated compelling preliminary data
showing that the loss of a Purkinje cell gene, Car8, causes an ET-like tremor that mimics the human
condition in its frequency, progression with age, and responsiveness to alcohol. Here, we will expand
on this work by testing the hypothesis that loss of Car8 function causes cerebellar oscillations that
drive tremorgenic activity in the thalamocortical circuit. In our first aim, we will trace the path of the 4-
12Hz tremor oscillations from the cerebellum to the inferior olive, thalamus, and motor cortex in active
mice. We will therefore identify the major brain oscillators that contribute to ET pathophysiology. In
our second aim, we define the cellular origin of the tremor by testing if genetically and optogenetically
altering Purkinje cell firing modulates tremor in Car8 mice. Because cerebellar inhibitory interneurons
are also implicated in ET, we will also test if modulating their activity onto Purkinje cells influences
tremor. This experiment will address how local circuit wiring impacts network-wide oscillations. Next
we will take advantage of the robust connectivity of the cerebellar nuclei with the rest of the motor
system, plus the efficacy of deep brain stimulation (DBS). In our third aim, we will use the Car8 mice
to test whether the cerebellar nuclei are an effective target for DBS. We hypothesize that directing the
DBS to the cerebellar nuclei will prevent the spread of pathological oscillations away from the source.
The utility of Car8 as a preclinical model shows promise towards uncovering the mechanisms for how
DBS works. Our research has importance to human health because we introduce a multi-disciplinary
approach to study a broad spectrum of tremors that are all challenging to define, diagnose, and treat.
项目摘要/摘要
震颤是最常见的运动障碍。它通过造成强烈的强烈而损害自愿行动
在步行,进食和说话期间摇晃。摇晃是重复的,高度有节奏的
受影响的身体部位来回“振荡”。振荡频率是Tremorim的定义特征;
在帕金森氏病,肌张力障碍和本质震颤(ET)中发现了不同的震颤。因为
震颤障碍具有神经系统基础,这意味着特定的脑振荡将身体驱动到
以相同的频率振荡。但是,尚不清楚中枢神经系统中的何处
振荡开始,导致连接大脑区域振荡的过程仍然存在
未知。在ET中,这是病理性震颤的最普遍形式,是后脑运动区域
称为小脑已被严重牵涉到异常活性的主要来源。但是,怎么样
小脑活性异常导致振荡动作受到挑战。这很大程度上
由于缺乏合适的动物模型。为了解决这个问题,我们确定了一只鼠标
具有ET的核心特征的遗传模型。我们已经生成了引人入胜的初步数据
表明purkinje细胞基因car8的丧失会导致类似人类的Et样树
其频率,随着年龄的增长和对酒精的反应性的条件。在这里,我们将扩展
在这项工作中测试CAR8功能的损失导致小脑振荡的假设,
在丘脑皮质回路中驱动震颤活性。在我们的第一个目标中,我们将追踪4-的道路
从小脑到下橄榄,丘脑和运动皮层的12Hz震颤振荡
老鼠。因此,我们将确定有助于ET病理生理学的主要脑振荡器。在
我们的第二个目标,我们通过测试遗传和光学测试来定义树的细胞起源
更改Purkinje电池发射会调节CAR8小鼠中的树。因为小脑抑制性中间神经元
也已在ET中实施,我们还将测试是否将其活性调节到Purkinje细胞上
震颤。该实验将解决本地电路接线如何影响网络范围的振荡。下一个
我们将利用小脑核与电动机的其余部分的强大连通性
系统,加深脑刺激(DBS)的效率。在我们的第三个目标中,我们将使用CAR8小鼠
测试小脑核是否是DBS的有效靶标。我们假设指导
到小脑核的DBS将防止病理振荡从源头传播。
CAR8作为临床前模型的实用性显示出有望揭示如何揭示如何的机制
DBS起作用。我们的研究对人类健康具有重要意义,因为我们引入了多学科
研究各种震颤的方法,这些震颤都挑战了定义,诊断和治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roy Vincent Sillitoe其他文献
Roy Vincent Sillitoe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roy Vincent Sillitoe', 18)}}的其他基金
2023 Cerebellum Gordon Research Conference and Gordon Research Seminar
2023年小脑戈登研究大会暨戈登研究研讨会
- 批准号:
10683616 - 财政年份:2023
- 资助金额:
$ 33.85万 - 项目类别:
Spatial and temporal pathophysiology of developmental dystonia
发育性肌张力障碍的时空病理生理学
- 批准号:
10605284 - 财政年份:2022
- 资助金额:
$ 33.85万 - 项目类别:
相似国自然基金
线上民宿房东亲和力对房客预定行为的影响机制研究——基于多源异构数据视角
- 批准号:72202154
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
线上民宿房东亲和力对房客预定行为的影响机制研究——基于多源异构数据视角
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
估计和解释序列变体对蛋白质稳定性、结合亲和力以及功能的影响
- 批准号:31701136
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
RGS19对嗜酸细胞性食管炎FcεRI信号传导通路的影响及其作用机制的研究
- 批准号:81500502
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
人B组腺病毒纤毛蛋白与DSG2受体亲和力的差异及其对病毒致病力的影响研究
- 批准号:31570163
- 批准年份:2015
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
Immunomodulatory ligand B7-1 targets p75 neurotrophin receptor in neurodegeneration
免疫调节配体 B7-1 在神经变性中靶向 p75 神经营养蛋白受体
- 批准号:
10660332 - 财政年份:2023
- 资助金额:
$ 33.85万 - 项目类别:
3D Methodology for Interpreting Disease-Associated Genomic Variation in RAG2
解释 RAG2 中疾病相关基因组变异的 3D 方法
- 批准号:
10724152 - 财政年份:2023
- 资助金额:
$ 33.85万 - 项目类别:
Unraveling how Lipophilic Modulators Alter pLGIC Function via Interactions with the M4 Transmembrane Helix
揭示亲脂性调节剂如何通过与 M4 跨膜螺旋相互作用改变 pLGIC 功能
- 批准号:
10785755 - 财政年份:2023
- 资助金额:
$ 33.85万 - 项目类别:
Investigating how bHLH circuits integrate signals for cell fate decisions
研究 bHLH 电路如何整合信号以决定细胞命运
- 批准号:
10722452 - 财政年份:2023
- 资助金额:
$ 33.85万 - 项目类别:
Pilot Studies of PAX3-FOXO1 Fusions Proteins in Alveolar Rhabdomyosarcoma
PAX3-FOXO1 融合蛋白在肺泡横纹肌肉瘤中的初步研究
- 批准号:
10726763 - 财政年份:2023
- 资助金额:
$ 33.85万 - 项目类别: