Visual Search in 3D Medical Imaging Modalities
3D 医学成像模式中的视觉搜索
基本信息
- 批准号:9977201
- 负责人:
- 金额:$ 34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAdoptedAdoptionAreaBackBenchmarkingBreast MicrocalcificationCancer DetectionCancer EtiologyCategoriesCessation of lifeClinicClinicalComplementComputer ModelsDataDeath RateDetectionDiagnostic ErrorsDigital Breast TomosynthesisEarly DiagnosisEnsureEvaluationEyeEye MovementsGoalsHumanImageImaging technologyIndividualKnowledgeLeadLesionMalignant NeoplasmsMalignant neoplasm of lungMammographic screeningMammographyMedical ImagingMethodologyModelingModernizationNoisePatternPerceptionPerformancePeripheralPositioning AttributeProceduresPsychophysicsRadiology SpecialtyReadingRoleScanningSignal TransductionSliceSourceSpecific qualifier valueTechniquesTechnologyThree Dimensional Medical ImagingThree-Dimensional ImageThree-Dimensional ImagingTimeTrainingVisionVisualVisual system structureWomanWorkbreast imagingbreast lesionclinical imagingclinically relevantcomputerized toolsdesigndigitalgazeimaging modalitymalignant breast neoplasmnew technologyprogramsradiologistreal time monitoringsample fixationthree-dimensional modelingtoolvision sciencevisual processingvisual searchvisual tracking
项目摘要
Project Summary
Early detection through screening mammography has decreased death rates from breast cancer. There are
approximately 39 million mammogram procedures conducted each year in US. However, there are still
alarmingly high error rates in radiological interpretations, with missed cancer rates ranging from 10-18 percent
and false positive rates as high as 67% over a 10-year period. In order to reduce errors rates, digital breast
tomosynthesis, a new 3D imaging technology intended to make cancers more visible to the radiologist, is
rapidly being introduced throughout clinics in the US. However, there is no thorough understanding of the
potential impact of these new 3D imaging technologies on radiological errors, and no knowledge of what eye
movement strategies should be used by radiologists to minimize errors when searching through these
volumes, while keeping manageable reading times. The current proposal combines expertise in medical image
perception and state of the art vision science to increase the theoretical and empirical understanding of 3D
search. To achieve such goal we aim: a) To understand how the types of errors detecting masses and
microcalcifications are impacted by 3D search in digital breast tomosynthesis images; b) To gain an
understanding of the functional impact on errors of adopting different eye movement strategies to search
through 3D volumes; c) To develop a computational model of 3D search that includes foveated visual
processing, scanning and drilling. The model will be used to assess the adequacy and efficiency of different
eye movement strategies and to identify potential suboptimalities associated with an individual’s eye
movement strategies or visual capabilities in the visual periphery. The psychophysical studies, eye tracking
and computational models will be initially developed with trained non-radiologists, filtered noise and digital
breast tomosynthesis phantoms. Subsequently, the findings and model will be validated with radiologists and
real clinical images. If successful, the proposed studies will provide a new theoretical understanding of the
types of radiological errors that occur and the functional role of search patterns on 3D search with digital breast
tomosynthesis images, and provide computational tools to assess whether a radiologist’s eye movement
patterns are well matched to their detection capabilities in their visual peripheral. Together, these advances
can potentially help reduce errors in cancer detection. Although the proposed methodology is in the context of
breast cancer and digital breast tomosynthesis, the principles investigated are potentially applicable to other
areas of 3D medical images in radiology.
项目摘要
通过筛查乳房摄影的早期发现使乳腺癌的死亡率恶化。有
每年在美国进行大约3900万个乳房X线照片程序。但是,仍然有
令人震惊的是放射学解释中的错误率,癌症率较高,范围为10-18个百分比
在10年期间,假阳性率高达67%。为了降低错误率,数字乳房
Tomosynthesis是一种新的3D成像技术,旨在使癌症对放射科医生更为明显,是
迅速被美国整个诊所引入。但是,对
这些新的3D成像技术对放射学错误的潜在影响,也不知道什么眼
放射科医生应使用运动策略来最大程度地减少搜索错误
数量,同时保留可管理的阅读时间。当前的建议结合了医学图像的专业知识
艺术愿景科学的感知和状态,以提高对3D的理论和经验理解
搜索。为了实现这样的目标,我们的目标是:a)了解错误的类型如何检测群众和
微钙化受到数字乳房断层图像中的3D搜索的影响; b)获得
理解功能对采用不同眼动策略搜索的错误的影响
通过3D卷; c)开发一个3D搜索的计算模型,其中包括foveated Visual
处理,扫描和钻探。该模型将用于评估不同的适当性和效率
眼动策略,并确定与个人眼睛相关的潜在次级优势
视觉外围的运动策略或视觉功能。心理物理研究,眼睛跟踪
最初将通过训练有素的非降级学家,过滤噪声和数字化开发计算模型
乳房间压幻象。随后,发现和模型将被放射学家和
真实的临床图像。如果成功,拟议的研究将为您提供新的理论理解
出现的放射学错误的类型以及搜索模式在3D搜索中使用数字乳房的功能作用
Tomosynthesis图像,并提供计算工具来评估放射科医生的眼动
图案与其视觉外围的检测功能非常匹配。这些进步在一起
可能有助于减少癌症检测的错误。尽管提出的方法是在
乳腺癌和数字乳房合成,研究原理可能适用于其他
放射学中3D医学图像的区域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Miguel Patricio Eckstein其他文献
Miguel Patricio Eckstein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Miguel Patricio Eckstein', 18)}}的其他基金
Assessment of medical image quality with foveated search models
使用中心点搜索模型评估医学图像质量
- 批准号:
8889132 - 财政年份:2015
- 资助金额:
$ 34万 - 项目类别:
Assessment of medical image quality with foveated search models
使用中心点搜索模型评估医学图像质量
- 批准号:
9275500 - 财政年份:2015
- 资助金额:
$ 34万 - 项目类别:
Neural representation of scene context during visual search
视觉搜索过程中场景上下文的神经表示
- 批准号:
8619634 - 财政年份:2013
- 资助金额:
$ 34万 - 项目类别:
Neural representation of scene context during visual search
视觉搜索过程中场景上下文的神经表示
- 批准号:
8436142 - 财政年份:2013
- 资助金额:
$ 34万 - 项目类别:
相似国自然基金
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
破解老年人数字鸿沟:老年人采用数字技术的决策过程、客观障碍和应对策略
- 批准号:72303205
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
- 批准号:12305261
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
- 批准号:62301339
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
- 批准号:
10673513 - 财政年份:2023
- 资助金额:
$ 34万 - 项目类别:
Engineering 3D Osteosarcoma Models to Elucidate Biology and Inform Drug Discovery
工程 3D 骨肉瘤模型以阐明生物学并为药物发现提供信息
- 批准号:
10564801 - 财政年份:2023
- 资助金额:
$ 34万 - 项目类别:
Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
- 批准号:
10602275 - 财政年份:2023
- 资助金额:
$ 34万 - 项目类别: