Automatic Rib Fracture Detection in Pediatric Radiography to Identify Non-Accidental Trauma
儿科放射线照相中的自动肋骨骨折检测以识别非意外创伤
基本信息
- 批准号:9976563
- 负责人:
- 金额:$ 17.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-12 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:Assessment toolCause of DeathCessation of lifeChestChildChild AbuseChildhoodClinicalComputer AssistedDataDetectionDiagnosticDiagnostic radiologic examinationEnsureFaceFractureGoalsHospitalsImageImage AnalysisInfantInjuryInstitutional Review BoardsLabelLeadLungMachine LearningMediastinalMedical ImagingMethodologyMethodsModelingNon-accidentalOutcomePatient imagingPediatric HospitalsPediatric RadiologyPerformancePopulationPositioning AttributeRespiratory DiaphragmRib FracturesRoleSentinelSiteStructureSupervisionTestingThoracic cavity structureTimeTrainingTranslationsTraumaUnited StatesVendorWorkbonechild physical abuseclinical practiceconvolutional neural networkcostdeep learningdetectorexperiencefollow-uphands-on learningimaging platformimaging studyimprovedmachine learning methodmortalitymultimodalitynovelpatient populationphysical abuseradiologistrapid techniquerib bone structuresoft tissuesupervised learningtool
项目摘要
ABSTRACT
Automatic Rib Fracture Detection in Pediatric Radiography to Identify Non-Accidental Trauma
PI: Adam M. Alessio
Non-accidental trauma caused by physical abuse is a leading cause of death in children in the United States.
Because rib fractures are highly predictive of child abuse and chest radiographs are commonly performed for
multiple indications, pediatric chest radiographs can have a critical role in the identification of abuse. Detection
of rib fractures on pediatric radiographs is challenging and a high percentage of fractures are missed,
particularly in imaging centers with limited pediatric radiology experience. Currently, there are no viable
computer assisted strategies for rib fracture detection on chest radiographs. The purpose of this proposal is to
develop machine learning methodology to detect rib fractures on pediatric radiographs using images from a
network of hospitals. These methods will rely on a two-stage approach including a thoracic cavity segmentation
stage followed by a fracture detection stage. We will explore two fracture detection strategies using novel
supervised learning approaches: a heterogeneous U-net and a multi-modal regional-convolutional neural
network. These methods will be trained and tested with a large set of fracture-absent radiographs (N=1000)
from Seattle Children's Hospital and a diverse set of labelled fracture-present radiographs (N=500) from
collaborating sites. These methods will be developed with an intentionally diverse set of radiographs,
representative of the variety of fracture presentations and image quality in clinical practice, in order to position
this rib fracture detection method for rapid translation to clinical practice. The ultimate goal of this proposal is
to provide a computer assisted rib fracture assessment tool that would be a rapid and widely-available add-on
to all pediatric chest radiograph exams, improving detection of rib fractures and potentially leading to improved
identification of child abuse.
抽象的
小儿射线照相中的自动肋骨骨折检测,以识别非事故创伤
PI:Adam M. Alessio
由身体虐待引起的非事故创伤是美国儿童的主要死亡原因。
因为肋骨骨折高度预测虐待儿童,并且通常进行胸部X光片
多种迹象,小儿胸部X光片在识别滥用方面可能起关键作用。检测
小儿X光片上的肋骨骨折是具有挑战性的,缺少骨折的比例很高,
特别是在小儿放射学经验有限的成像中心。目前,没有可行的
计算机辅助策略,用于胸部X光片上的肋骨断裂检测。该提议的目的是
开发机器学习方法,以使用来自儿科射线照相的肋骨骨折
医院网络。这些方法将依赖于两个阶段的方法,包括胸腔腔分段
阶段,然后是断裂检测阶段。我们将使用新颖
监督学习方法:一种异质的U-NET和多模式区域跨跨神经
网络。这些方法将接受大量骨折X光片(n = 1000)的训练和测试
来自西雅图儿童医院,以及一套不同的标签骨折射线照片(n = 500)
协作网站。这些方法将使用有意的X光片组合开发,
代表临床实践中各种断裂表现和图像质量的代表,以定位
这种肋骨断裂检测方法用于快速转化为临床实践。该提议的最终目标是
提供计算机辅助肋骨断裂评估工具,该工具将是一个快速且广泛可用的附加组件
在所有儿科胸部X光片检查中,改善肋骨骨折的检测并有可能改善
识别虐待儿童。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam M Alessio其他文献
Adam M Alessio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adam M Alessio', 18)}}的其他基金
Development of Artificial Intelligence (AI) based algorithms to classify the Pneumoconioses
开发基于人工智能(AI)的算法来对尘肺病进行分类
- 批准号:
10428946 - 财政年份:2022
- 资助金额:
$ 17.81万 - 项目类别:
Development of Artificial Intelligence (AI) based algorithms to classify the Pneumoconioses
开发基于人工智能 (AI) 的算法来对尘肺病进行分类
- 批准号:
10709621 - 财政年份:2022
- 资助金额:
$ 17.81万 - 项目类别:
相似国自然基金
南盘江流域次生林中树木死亡原因及其残体特征的研究
- 批准号:
- 批准年份:2020
- 资助金额:35 万元
- 项目类别:地区科学基金项目
梭梭与头状沙拐枣在极端环境的生存机制与死亡原因研究
- 批准号:31971731
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
基于红外光谱及质谱组织成像结合化学计量学方法对高、低温死亡原因鉴定的探索性研究
- 批准号:81671869
- 批准年份:2016
- 资助金额:58.0 万元
- 项目类别:面上项目
相似海外基金
Evaluating the use of verbal autopsy methods for producing cause of death estimates in Uganda
评估乌干达使用口头尸检方法进行死因估计的情况
- 批准号:
2587582 - 财政年份:2021
- 资助金额:
$ 17.81万 - 项目类别:
Studentship
A research on victim considering cause of death in Miyagi Prefecture in the Great East Japan Earthquake
东日本大地震宫城县受害者死因研究
- 批准号:
20K14999 - 财政年份:2020
- 资助金额:
$ 17.81万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Improving Communication of Cause of Death and Heritable Heart Disease Risk to Families of Sudden Cardiac Death Victims: A Mixed Methods Study
改善对心脏性猝死受害者家属的死因和遗传性心脏病风险的沟通:一项混合方法研究
- 批准号:
437956 - 财政年份:2020
- 资助金额:
$ 17.81万 - 项目类别:
Operating Grants
Establishing and evaluating minimally invasive autopsy to determine cause of death from infectious disease in Vietnam
建立和评估微创尸检以确定越南传染病死因
- 批准号:
MR/R026300/1 - 财政年份:2020
- 资助金额:
$ 17.81万 - 项目类别:
Research Grant
Population attributable risk estimation for major cause of death associated with family history in Japanese
日本与家族史相关的主要死亡原因的人群归因风险估计
- 批准号:
19K24186 - 财政年份:2020
- 资助金额:
$ 17.81万 - 项目类别:
Grant-in-Aid for Research Activity Start-up