Understanding how activity drives diverse spine structural interactions
了解活动如何驱动不同的脊柱结构相互作用
基本信息
- 批准号:9974133
- 负责人:
- 金额:$ 38.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AdultAffectBody Weight ChangesBrainCalciumChemosensitizationComplexDendritic SpinesDependenceDevelopmentElectrophysiology (science)EquilibriumEventFunctional disorderGlutamatesGoalsGrowthHippocampus (Brain)ImageIndividualInformation StorageLeadLearningLogicLong-Term DepressionMediatingMental DepressionMetabotropic Glutamate ReceptorsModificationMolecularMonitorNeuronal DysfunctionNeuronsOutcomeOutputPatternPoisson DistributionProcessProductionProtein BiosynthesisProteinsPublishingRegulationResolutionShapesSignal TransductionSliceSpecificityStructureSynapsesSynaptic plasticitySystemTestingVertebral columnWeightWorkbasecognitive functionexperienceexperimental studyhippocampal pyramidal neuronin vivoinformation processinginterestneural circuitsensorsynaptic depressiontwo-photon
项目摘要
Abstract
Brain circuits can be structurally rearranged with experience, and synaptic connections can grow and be
eliminated, even in adults. We have shown that activity at specific inputs can lead to the production of new
proteins, promoting either long lasting growth of single spines, or cooperation and competition between multiple
synapses following potentiation. The balance between such interactions during structural plasticity can be the
basis for plasticity at the circuit level, which allows for the rewiring of inputs within a dendritic domain. However,
in order to be able to achieve such reorganization, mechanisms for strengthening co-active inputs as well as
those that would achieve weakening and elimination of inputs would be required. The synthesis of new proteins
is crucial for the long term storage of information, long lasting synaptic potentiation and structural plasticity. Of
interest, this is also necessary for long lasting forms of synaptic depression, while much less is understood about
the bidirectional regulation of structural plasticity. In addition to these Hebbian plasticity processes, additional
forms of plasticity, such as homeostatic modulation, impact the plasticity capacity of dendritic branches.
Homeostatic plasticity can scale synaptic currents, as well as spine structures, and can interact with Hebbian
plasticity to elicit plasticity at non active neighbors. In addition, neurons receive diverse patterns of activity at
their inputs, and it is unknown how these effect structural plasticity, or whether they are more or less likely to be
subject to complex integration between co-active inputs. Therefore, using two-photon imaging and glutamate
uncaging to stimulate and monitor plasticity at single spines or defined groups of spines, we will investigate the
relationship between different forms of plasticity and spine structural changes. Specifically, we will determine
whether synaptic depression can be induced at single inputs, what are the structural outputs of this form of
plasticity, and whether protein synthesis dependent depression at multiple inputs can undergo competition.
Further, we will investigate the structural plasticity rules of interactions between different forms of activity, such
as Hebbian and homeostatic plasticity, when they coincide within a dendritic domain at multiple inputs. Beyond
these forms of plasticity, we will also investigate non-regular patterns of activity, that follow instead a Poisson
distribution, in order to build an understanding of how individual inputs process a diversity of activity, how they
integrate this with events at co-active neighbors, and what are the structural correlates of these forms of plasticity.
These experiments will allow us to investigate with unprecedented precision at the molecular, subcellular and
circuit level the dynamics of synaptic interactions, and how they contribute to the building and refinement of
neural circuits necessary for cognitive function.
抽象的
脑电路可以通过经验进行结构重新排列,突触连接可以增长并成为
即使在成年人中也被淘汰。我们已经表明,特定输入的活动可以导致新的生产
蛋白质,促进单个刺的持久生长,或多个蛋白质的合作与竞争
增强后突触。结构可塑性期间这种相互作用之间的平衡可能是
在电路水平上可塑性的基础,这允许在树突状域内重新布线输入。然而,
为了能够实现这种重组,加强共同投入的机制以及
那些将需要减弱和消除投入的人。新蛋白的合成
对于长期存储信息,持久的突触增强和结构可塑性至关重要。的
兴趣,这对于长期持久的突触抑郁症也是必要的,而对
结构可塑性的双向调节。除了这些Hebbian可塑性过程外,
可塑性的形式,例如体内稳态调节,影响树突分支的可塑性能力。
稳态可塑性可以扩展突触电流以及脊柱结构,并可以与Hebbian相互作用
可塑性以引起非活跃邻居的可塑性。此外,神经元在
它们的输入,尚不清楚这些效果如何结构可塑性,或者它们是否或多或少是可能的
如果共同活性输入之间的复杂整合。因此,使用两光子成像和谷氨酸
启动和监测单个刺或定义的棘突的可塑性,我们将研究
不同形式的可塑性与脊柱结构变化之间的关系。具体来说,我们将确定
是否可以在单个输入处诱导突触抑郁症,这种形式的结构输出是什么
可塑性以及蛋白质合成是否依赖于多个输入的抑郁症会发生竞争。
此外,我们将研究不同形式的活动之间相互作用的结构可塑性规则,
作为Hebbian和稳态可塑性,当它们在多个输入的树突状域中重合时。超过
这些形式的可塑性,我们还将研究非规范的活性模式,而托有泊松
分发,以建立对个人投入如何处理各种活动的理解,他们如何
将其与共同活性邻居的事件结合在一起,以及这些形式的可塑性的结构相关性是什么。
这些实验将使我们能够在分子,亚细胞和
电路水平突触相互作用的动态,以及它们如何贡献和改进
认知功能所需的神经回路。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Inbal Israely其他文献
Inbal Israely的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Inbal Israely', 18)}}的其他基金
Understanding how activity drives diverse spine structural interactions
了解活动如何驱动不同的脊柱结构相互作用
- 批准号:
10840581 - 财政年份:2023
- 资助金额:
$ 38.86万 - 项目类别:
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Sleep Extension: A Novel Intervention for Weight Loss in Young Adults
延长睡眠:年轻人减肥的新干预措施
- 批准号:
10753226 - 财政年份:2023
- 资助金额:
$ 38.86万 - 项目类别:
A remote-based yoga intervention for improving long-term weight loss
用于改善长期减肥效果的远程瑜伽干预
- 批准号:
10581078 - 财政年份:2023
- 资助金额:
$ 38.86万 - 项目类别:
Increasing Access to USPSTF-Recommended Obesity Care for Youth and Adults Who Are Recipients of Medicaid: Evaluation of a Comprehensive Multidisciplinary Obesity Care Training Program in FQHCs
增加获得 USPSTF 建议的医疗补助青少年和成人肥胖护理的机会:对 FQHC 综合性多学科肥胖护理培训计划的评估
- 批准号:
10737453 - 财政年份:2023
- 资助金额:
$ 38.86万 - 项目类别:
Examining Time and Nutrient Dependent Effects of Aerobic Exercise on Energy Metabolism in Adults with Overweight and Obesity
检查有氧运动对超重和肥胖成人能量代谢的时间和营养依赖性影响
- 批准号:
10886945 - 财政年份:2023
- 资助金额:
$ 38.86万 - 项目类别: