Rare Variant Whole Genome Analysis and iPSC Validation of Putative Genetic Modifiers of Huntington Disease
亨廷顿病的假定遗传修饰物的罕见变异全基因组分析和 iPSC 验证
基本信息
- 批准号:9925102
- 负责人:
- 金额:$ 64.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-01 至 2021-03-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAgeAge of OnsetAlzheimer&aposs DiseaseAppearanceAutophagocytosisBiologicalCRISPR/Cas technologyCellsCellular StressClinicalClinical TrialsCorpus striatum structureDataData SetDevelopmentDiseaseDisease ProgressionEnrollmentExhibitsFamilyFamily memberFundingGene ExpressionGene ProteinsGenerationsGenesGeneticGenetic DiseasesGenetic PolymorphismGenomeGoalsGrantHeritabilityHumanHuntington DiseaseHuntington geneHuntington proteinImpairmentIndividualInstitutesKnowledgeLabelLate-Onset DisorderLate-Onset Huntington DiseaseLengthLinkMeasuresMedical RecordsMetabolic Clearance RateMethodsMindModelingMolecular TargetMonitorNatureNerve DegenerationNeuritesNeurodegenerative DisordersNeuronsOnset of illnessOpticsPathway interactionsPatientsPatternPharmaceutical PreparationsPhenotypePhysiologic pulsePopulationProcessPropertyProteinsRecording of previous eventsResearchRoleStatistical MethodsSurvival AnalysisSymptomsSystemSystems BiologyTechnologyTestingTherapeuticTimeToxic effectTranslatingUnited States National Institutes of HealthValidationVariantbasecellular imagingclinical phenotypedesigndisease phenotypegene productgenetic linkage analysisgenetic variantgenome analysisgenome sequencinggenome wide association studyimprovedinduced pluripotent stem cellinsightmembermulticatalytic endopeptidase complexmutantnew technologynew therapeutic targetnovelnovel therapeuticsoverexpressionprogramsrare variantrobotic microscopysegregationselective expressionstem cell modelwhole genome
项目摘要
PROJECT SUMMARY
The goal of our studies is to identify and validate genes, proteins, and biological pathways that modulate
neurodegeneration induced by mutant huntingtin (mHtt), the protein that causes Huntington's disease (HD). This
knowledge will provide new insights into the underlying mechanisms of HD and may reveal novel therapeutic
targets that are more druggable than mHtt. While mHtt is the major cause for HD, a number of studies have
indicated that genetic modifiers interact with mHtt to affect progression of neurodegeneration in HD. In fact, a
substantial genetic contribution to HD is not accounted for solely by the gene that encodes mHtt, or by the few
modifiers that have been identified by other research groups. We hypothesize that rare genetic variants
contribute to the disease onset and progression of HD that have been missed by genome-wide association
studies (GWAS) or candidate-based approaches. With this in mind, we conducted whole-genome sequencing
(WGS) on multiple HD families and identified candidates in novel genes not previously implicated in HD. They
are involved in protein clearance and other cellular pathways that may contribute to neurodegeneration in HD.
We provide direct evidence, for the first time, that a subset of these candidates modify neurodegeneration of
human striatal-like HD iPSC-derived neurons (HD striatal i-neuron).
In the proposed studies, we will further validate and investigate the mechanisms by which these potential
genetic modifiers modulate neurodegeneration and expand our analysis to additional variants and their cellular
pathways that contribute to neurodegeneration in HD. Human neuron models recapitulate several key features
of HD, and a form of cellular imaging called robotic microscopy (RM) enables high-throughput (HT), high-content,
longitudinal single-neuron analysis of these models. The data sets generated by RM reveal different aspects of
neurodegeneration, including survival, analyzed by powerful statistical methods, or changes in neurite length,
which is a predictor of cellular stress. Our toolbox uses other powerful approaches to assess a candidates' effects
on neurodegeneration, such as an optical-pulse labeling (OPL) technology that can measure the rate of
clearance of proteins by proteasome activity or autophagy within single cells. We have an NIH X01 grant that is
sequencing 104 additional members of 19 new HD families for which we have extensive medical records and
clinical history on. We will extend our WGS analysis to these families and combine the data to identify a more
complete set of interacting gene partners and pathways and to help focus our list of current candidates that
contribute to HD onset and trajectory. New putative variants will be tested in our human HD i-neuron model to
validate them as potential genetic modifiers and to better define cellular pathways involved in modulating onset
of HD. The discovery of novel genetic modifiers of HD will further elucidate the disease mechanisms in HD and
identify new directions for developing disease-modifying therapeutics and for stratifying HD populations for more
successful clinical trials.
项目摘要
我们研究的目的是识别和验证调节基因,蛋白质和生物途径
由突变体亨廷顿蛋白(MHTT)诱导的神经变性,这是导致亨廷顿氏病(HD)的蛋白质。这
知识将为HD的潜在机制提供新的见解,并可能揭示新的治疗性
比MHTT更毒的目标。虽然MHTT是HD的主要原因,但许多研究已
表明遗传修饰符与MHTT相互作用,以影响HD中神经退行性的进展。实际上,
编码MHTT的基因或少数几个基因不考虑对HD的实质性遗传贡献
由其他研究小组确定的修饰符。我们假设稀有遗传变异
有助于疾病的发作和HD的发展,而全基因组关联却遗漏了
研究(GWAS)或基于候选的方法。考虑到这一点,我们进行了全基因组测序
(WG)在多个HD家族上,并在以前与HD相关的新基因中鉴定了候选者。他们
参与蛋白质清除率和其他可能导致HD神经退行性的细胞途径。
我们首次提供了直接证据,表明这些候选者的子集修改了神经退行性的。
人纹状体样HD IPSC衍生的神经元(HD纹状体I-Neuron)。
在拟议的研究中,我们将进一步验证和研究这些潜力的机制
遗传修饰符调节神经变性并将我们的分析扩展到其他变体及其细胞
导致HD神经退行性的途径。人类神经元模型概括了几个关键特征
高清和一种称为机器人显微镜(RM)的细胞成像形式可实现高通量(HT),高含量,
这些模型的纵向单神经元分析。 RM生成的数据集揭示了
神经变性,包括生存,通过强大的统计方法分析或神经突长度的变化,
这是细胞应激的预测指标。我们的工具箱使用其他强大的方法来评估候选人的效果
关于神经变性的,例如光脉冲标签(OPL)技术,可以测量
通过蛋白酶体活性或单细胞内自噬清除蛋白质。我们有NIH X01赠款
测序我们有大量医疗记录的19个新高清家庭中的另外104位成员
临床病史。我们将将WGS分析扩展到这些家庭,并结合数据以识别更多
完整的互动基因伙伴和途径集,并帮助我们集中我们当前的候选人名单
有助于高清发作和轨迹。新的推定变体将在我们的人类高清I-Neuron模型中进行测试
将它们验证为潜在的遗传修饰符,并更好地定义参与调节发作的细胞途径
高清。新型HD遗传修饰剂的发现将进一步阐明HD和
确定开发疾病改良治疗剂和分层高清种群的新方向
成功的临床试验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STEVEN M FINKBEINER其他文献
STEVEN M FINKBEINER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STEVEN M FINKBEINER', 18)}}的其他基金
Image Tools for Computational Cellular Barcoding and Automated Annotation
用于计算细胞条形码和自动注释的图像工具
- 批准号:
10552638 - 财政年份:2022
- 资助金额:
$ 64.38万 - 项目类别:
Image Tools for Computational Cellular Barcoding and Automated Annotation
用于计算细胞条形码和自动注释的图像工具
- 批准号:
10367874 - 财政年份:2022
- 资助金额:
$ 64.38万 - 项目类别:
Role of central and peripheral immune crosstalk in FTD-Grn neurodegeneration
中枢和外周免疫串扰在 FTD-Grn 神经变性中的作用
- 批准号:
10514263 - 财政年份:2022
- 资助金额:
$ 64.38万 - 项目类别:
Cell and Network Disruptions and Associated Pathogenenesis in Tauopathy and Down Syndrome
Tau 蛋白病和唐氏综合症的细胞和网络破坏及相关发病机制
- 批准号:
9974319 - 财政年份:2020
- 资助金额:
$ 64.38万 - 项目类别:
Cell and Network Disruptions and Associated Pathogenenesis in Tauopathy and Down Syndrome
Tau 蛋白病和唐氏综合症的细胞和网络破坏及相关发病机制
- 批准号:
10377486 - 财政年份:2020
- 资助金额:
$ 64.38万 - 项目类别:
Cell and Network Disruptions and Associated Pathogenenesis in Tauopathy and Down Syndrome
Tau 蛋白病和唐氏综合症的细胞和网络破坏及相关发病机制
- 批准号:
10601035 - 财政年份:2020
- 资助金额:
$ 64.38万 - 项目类别:
Cell and Network Disruptions and Associated Pathogenenesis in Tauopathy and Down Syndrome
Tau 蛋白病和唐氏综合症的细胞和网络破坏及相关发病机制
- 批准号:
10599756 - 财政年份:2020
- 资助金额:
$ 64.38万 - 项目类别:
Understanding the molecular mechanisms that contribute to neuropsychiatric symptoms in Alzheimer Disease
了解导致阿尔茨海默病神经精神症状的分子机制
- 批准号:
10406707 - 财政年份:2019
- 资助金额:
$ 64.38万 - 项目类别:
Understanding the molecular mechanisms that contribute to neuropsychiatric symptoms in Alzheimer Disease
了解导致阿尔茨海默病神经精神症状的分子机制
- 批准号:
10651757 - 财政年份:2019
- 资助金额:
$ 64.38万 - 项目类别:
Understanding the molecular mechanisms that contribute to neuropsychiatric symptoms in Alzheimer Disease
了解导致阿尔茨海默病神经精神症状的分子机制
- 批准号:
10439255 - 财政年份:2019
- 资助金额:
$ 64.38万 - 项目类别:
相似国自然基金
PLAAT3降低介导线粒体降解异常在年龄相关性白内障发病中的作用及机制
- 批准号:82301190
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
晶状体mtDNA氧化损伤修复与线粒体自噬的空间差异及其调控干预在年龄相关性白内障发病中的作用
- 批准号:82171038
- 批准年份:2021
- 资助金额:54 万元
- 项目类别:面上项目
FoxO3a通路抑制在年龄相关性白内障发病机制中的调控作用
- 批准号:82070942
- 批准年份:2020
- 资助金额:57 万元
- 项目类别:面上项目
肠道微生态参与年龄相关性黄斑变性的发病机制及固本清目方的干预作用
- 批准号:81973912
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目
ODRP泛素化经LECs外泌体释放和自噬降解调控年龄相关性白内障的发病
- 批准号:81974129
- 批准年份:2019
- 资助金额:57 万元
- 项目类别:面上项目
相似海外基金
Childhood trauma, hippocampal function, and anhedonia among those at heightened risk for psychosis
精神病高危人群中的童年创伤、海马功能和快感缺失
- 批准号:
10825287 - 财政年份:2024
- 资助金额:
$ 64.38万 - 项目类别:
Development of CM-CS1 CAR Treg to Treat Amyotrophic Lateral Sclerosis (ALS)
开发 CM-CS1 CAR Treg 治疗肌萎缩侧索硬化症 (ALS)
- 批准号:
10696512 - 财政年份:2023
- 资助金额:
$ 64.38万 - 项目类别:
Neuronal ABCA7 loss of function and Alzheimer’s disease
神经元 ABCA7 功能丧失与阿尔茨海默病
- 批准号:
10629715 - 财政年份:2023
- 资助金额:
$ 64.38万 - 项目类别:
Social Vulnerability, Sleep, and Early Hypertension Risk in Younger Adults
年轻人的社会脆弱性、睡眠和早期高血压风险
- 批准号:
10643145 - 财政年份:2023
- 资助金额:
$ 64.38万 - 项目类别:
Cross-modal plasticity after the loss of vision at two early developmental ages in the posterior parietal cortex: Adult connections, cortical function and behavior.
后顶叶皮质两个早期发育年龄视力丧失后的跨模式可塑性:成人连接、皮质功能和行为。
- 批准号:
10751658 - 财政年份:2023
- 资助金额:
$ 64.38万 - 项目类别: