Data Management and Statistical Core
数据管理与统计核心
基本信息
- 批准号:9921988
- 负责人:
- 金额:$ 46.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAlzheimer&aposs DiseaseAlzheimer&aposs disease related dementiaApplications GrantsBasic ScienceBiological MarkersBrainChargeClinicalClinical ResearchClinical TrialsClinical Trials DesignCollaborationsCommunitiesComputer softwareConsultationsCustomDataData AnalysesData AnalyticsData SetData Storage and RetrievalDatabasesDevelopmentEnsureEvaluationGeneticGenomicsHeterogeneityImpaired cognitionIndividualInformaticsInformation ManagementIntervention TrialMaintenanceMeasuresMentorsMethodsMulticenter StudiesParticipantPilot ProjectsPopulation ResearchProcessProteomicsRandomizedRegistriesReportingReproducibilityResearchResearch DesignResearch PersonnelResearch Project GrantsResolutionResourcesSecureServicesSourceSpecimenStandardizationStatistical Data InterpretationStatistical MethodsStatistical ModelsSumSystemTechnologyTimeTrainingTraining ProgramsTranslational ResearchVisualizationVisualization softwarealgorithmic methodologiesanalytical methodcohortcomputational platformdata acquisitiondata exchangedata managementdata sharingdata visualizationdata warehousedesigndisease heterogeneityelectronic datainnovationinsightmachine learning methodmultidimensional dataneuroimagingnovelopen sourcepsychosocialrisk prediction modelskillssocial mediastatisticssynergismtooltranslational impacttranslational pipelineweb site
项目摘要
ABSTRACT- DATA MANAGEMENT & STATISTICS (DMS) CORE
The Data Management and Statistical (DMS) Core supports the NYU Alzheimer's Disease Research Center
(ADRC) and its Cores by providing state-of-the-art data and information management and statistical expertise.
The DMS Core aims to provide cutting edge research data management (AIM 1), by providing a customized,
comprehensive and scalable data acquisition and management platform in REDCap and provide scalable
technologies like Tableau for data visualization. The core will maintain unique linkages between the participants
and their data captured from other core's activities and from various collaborative/ affiliated studies, including
incorporating the global unique identifier (GUID) to streamline data collaborations between centers. DMS will
continue its inter core collaboration by, maintaining the database in collaboration; maintaining a dynamic registry;
maintaining standardized brain measures in the database; providing informatics and statistical collaboration for
the BMS core. The core will continue to provide scalable storage solutions and be the conduit to share data with
researchers and collaborators through latest tools and new systems. DMS will also interface with NACC to
implement data acquisition forms, submit UDS data in a timely manner and be swiftly handle query resolution.
DMS will continue to develop and implement innovative tools to incorporate various data sets including the vast
“-omics” data and also make the tools available to the wider research community through our website and social
media.
The DMS Core also aims to provide state-of-the-art statistical support (AIM 2) and promote scientific rigor,
by providing comprehensive statistical collaboration and consultation to all the Cores at NYU ADRC across the
entire spectrum of the translational research process of study design, conduct, analysis, visualization,
interpretation, and reporting of clinical, translational, and population-based research. DMS core will develop
innovative study designs and new statistical methods to address emerging research directions undertaken by
ADRC investigators that include developing new statistical models and methods to deal with latent
heterogeneities in ADRD, effective risk prediction models with variable selection, novel machine learning
methods for high dimensional data, and open platform computing algorithms and R packages. Finally, the DMS
Core mentors center affiliated young investigators and trainees in addition to promoting scientific rigor with
extensive statistical support, facilitating collaboration and optimizing resources with cutting edge data
management, and magnifying the impact of findings by promoting reproducible research and data sharing.
摘要-数据管理和统计 (DMS) 核心
数据管理和统计 (DMS) 核心支持纽约大学阿尔茨海默病研究中心
(ADRC)及其核心提供最先进的数据和信息管理以及统计专业知识。
DMS Core 旨在通过提供定制的、
REDCap 中全面且可扩展的数据采集和管理平台,并提供可扩展的
Tableau 等数据可视化技术的核心将在参与者之间保持独特的联系。
以及从其他核心活动和各种合作/附属研究中获取的数据,包括
合并全球唯一标识符 (GUID) 以简化 DMS 之间的数据协作。
通过协作维护数据库来继续其核心间的协作;
在数据库中维护标准化的大脑测量;提供信息学和统计协作
BMS核心将继续提供可扩展的存储解决方案,并成为共享数据的渠道。
研究人员和合作者还将通过最新的工具和新系统与 NACC 进行交互。
落实数据采集表单,及时提交UDS数据,快速处理查询解析。
DMS 将继续开发和实施创新工具来整合各种数据集,包括大量数据
“-omics”数据,并通过我们的网站和社交媒体向更广泛的研究界提供这些工具
媒体。
DMS 核心还旨在提供最先进的统计支持 (AIM 2) 并促进科学严谨性、
为纽约大学 ADRC 的所有核心提供全面的统计合作和咨询
研究设计、实施、分析、可视化等整个转化研究过程
将开发临床、转化和基于人群的研究的解释和报告。
创新的研究设计和新的统计方法来解决新兴研究方向
ADRC 调查人员包括开发新的统计模型和方法来处理潜在的问题
ADRD 中的异质性、具有变量选择的有效风险预测模型、新颖的机器学习
高维数据的方法,开放平台计算算法和R包最后是DMS。
核心导师中心附属的年轻研究者和实习生除了促进科学严谨性
广泛的统计支持,利用尖端数据促进协作并优化资源
管理,并通过促进可重复的研究和数据共享来放大研究结果的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yongzhao Shao其他文献
Yongzhao Shao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yongzhao Shao', 18)}}的其他基金
相似国自然基金
地表与大气层顶短波辐射多分量一体化遥感反演算法研究
- 批准号:42371342
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
高速铁路柔性列车运行图集成优化模型及对偶分解算法
- 批准号:72361020
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
随机密度泛函理论的算法设计和分析
- 批准号:12371431
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于全息交通数据的高速公路大型货车运行风险识别算法及主动干预方法研究
- 批准号:52372329
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
高效非完全信息对抗性团队博弈求解算法研究
- 批准号:62376073
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 46.31万 - 项目类别:
Brain Digital Slide Archive: An Open Source Platform for data sharing and analysis of digital neuropathology
Brain Digital Slide Archive:数字神经病理学数据共享和分析的开源平台
- 批准号:
10735564 - 财政年份:2023
- 资助金额:
$ 46.31万 - 项目类别:
SCH: Dementia Early Detection for Under-represented Populations via Fair Multimodal Self-Supervised Learning
SCH:通过公平的多模式自我监督学习对代表性不足的人群进行痴呆症早期检测
- 批准号:
10816864 - 财政年份:2023
- 资助金额:
$ 46.31万 - 项目类别:
High-resolution cerebral microvascular imaging for characterizing vascular dysfunction in Alzheimer's disease mouse model
高分辨率脑微血管成像用于表征阿尔茨海默病小鼠模型的血管功能障碍
- 批准号:
10848559 - 财政年份:2023
- 资助金额:
$ 46.31万 - 项目类别:
Traumatic Brain Injury Anti-Seizure Prophylaxis in the Medicare Program
医疗保险计划中的创伤性脑损伤抗癫痫预防
- 批准号:
10715238 - 财政年份:2023
- 资助金额:
$ 46.31万 - 项目类别: