Single-Molecule Imaging for Cell Biology and Super-Resolution Microscopy
细胞生物学和超分辨率显微镜的单分子成像
基本信息
- 批准号:9920156
- 负责人:
- 金额:$ 63.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-05-01 至 2021-04-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAffectAwardBacteriaBehaviorBiological ModelsBiotechnologyCaulobacter crescentusCellsCellular biologyChromatinCiliaCollaborationsComplexDNADependenceDiseaseEnvironmentEnzymesFluorescence MicroscopyFunding OpportunitiesImageLabelLaboratoriesLightMammalian CellMeasurementMeasuresMethodologyMethodsMicroscopeMicroscopyModificationMolecular MotorsMotionMotivationOligonucleotidesOpticsOrganellesOrganismPositioning AttributeProblem SolvingProcessProteinsPupilRNAResearchResearch MethodologyResearch PersonnelResolutionSpeedStructureThree-Dimensional ImagingTimeVisible RadiationWorkbasebioimagingcell behaviorcellular imagingfluorescence imaginghigh dimensionalityimaging capabilitiesimaging modalitylight microscopymolecular imagingnanomachinenanoscaleoptical imagingorganizational structureparticleprogramspublic health relevanceresearch and developmentsingle moleculetool
项目摘要
DESCRIPTION (provided by applicant): The cellular environment is both powerful and complex, depending both on structural organization from the micron scale down to the nanometer scale, as well as on the dynamic time-dependence of a huge array of enzymes, the Nano machines of the cell, and their work on proteins and oligonucleotides. Visible fluorescence microscopy has been a useful tool capable of non-invasively exploring cellular behavior, but the limited resolution of visible light microscopy has severely restricted the information obtainable on structures on a scale below 250 nm. Because the primary bio-molecular players in cells are in the size range on the order of 10 nm, measurements are needed on this size scale in living systems. Super-resolution microscopy, either based on single-molecule fluorescence imaging and control of the emitting concentration, or on stimulated emission depletion, has solved this problem by enabling access to spatial resolutions down to the 10-40 nm regimes and below. In addition, the complementary method of single-molecule tracking provides access to the details of motions of cellular components such as the molecular motors or the motion of DNA or RNA. Combined with advanced three-dimensional (3D) imaging, single-particle tracking allows the full motion of specific cellular players to be observed in their actual context at high speed. It is a primary thrust of this work to develop and enhance both 3D super-resolution imaging and 3D single-particle tracking in cells by pushing the boundaries of both approaches and inventing new strategies to overcome critical limitations, which will lead to unprecedented spatial and temporal information in fixed and living cells. Research in the Moerner laboratory broadly addresses the limitations of super-resolution imaging and single-particle tracking in cells. A key tool involves using pupil plane modification of wide-field microscopes to provide advanced function, such as 3D imaging over unprecedented axial range or imaging of molecular orientations at the single-molecule level. The deep motivation here is to ask the fundamental question: how can the information available from each single molecule be maximized, both by measuring new variables, but also by examining every aspect of the process and inventing new methods to remove any systematic errors. The methodological developments of this research will be applied to a variety of critical problems in cell biology by continuing established collaborations and developing new collaborations with well-known biologists. The bacterium, Caulobacter crescentus, remains as a powerful model system needing elucidation of the superstructure and motions of biomolecules to understand the origins of asymmetric division. The primary cilium, a tiny but important cellular organelle, is filled with protein motions and interactions which need exploration on the nanometer scale. The organization of chromatin on all scales remains to be fully understood. These and other cell biology problems with implications for both normal and diseased function will be the focus of the application of the advanced imaging methods of this research program.
描述(由应用程序提供):蜂窝环境既有功能又复杂,这既取决于从微米尺度到纳米尺度的结构组织,以及大量酶的动态时间依赖性,细胞的纳米机器及其对蛋白质和寡核苷酸的工作。可见的荧光显微镜已成为能够非侵入性探索细胞行为的有用工具,但是可见光显微镜的有限分辨率严重限制了在250 nm以下的规模上获得的对结构获得的信息。由于细胞中的主要生物分子参与者的尺寸范围在10 nm的范围内,因此需要在这种尺寸的生命系统上进行测量。超分辨率显微镜基于单分子荧光成像和对发射浓度的控制或刺激的发射耗尽的控制,通过使空间分辨率访问至10-40 nm左右的空间分辨率,从而解决了这一问题。此外,单分子跟踪的完整方法可访问细胞成分的细节,例如分子电机或DNA或RNA的运动。结合高级三维(3D)成像,单粒子跟踪可以在高速下在其实际上下文中观察到特定的蜂窝玩家的全部运动。这是这项工作的主要目的,是通过突破两种方法的边界并发明新策略来克服临界局限性,从而开发和增强细胞中3D超分辨率成像和3D单粒子跟踪,这将导致固定和活细胞中前所未有的空间和临时信息。 Moerner实验室的研究广泛解决了细胞中超分辨率成像和单粒子跟踪的局限性。一个关键工具涉及使用宽视野显微镜的瞳孔平面修饰来提供高级功能,例如在前所未有的轴向范围上进行3D成像或单分子水平上分子取向的成像。这里的深刻动机是提出一个基本问题:如何通过测量新变量,以及检查过程的各个方面并发明新方法来删除任何系统错误,从而最大程度地提高每个分子中可用的信息。这项研究的方法论发展将通过继续建立的合作并与知名生物学家开发新的合作,将其应用于细胞生物学的各种关键问题。染色质的组织Caulobacter Crescentus仍然是一个强大的模型系统,需要阐明生物分子的上层建筑和动作,以了解不对称分裂的起源。原发性纤毛是一种微小但重要的细胞细胞器,充满了蛋白质运动和相互作用,需要在纳米尺度上进行探索。在所有尺度上的染色质的组织尚待充分理解。这些和其他细胞生物学问题对正常功能和否定功能的影响将是该研究计划的先进成像方法的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William E Moerner其他文献
William E Moerner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William E Moerner', 18)}}的其他基金
Single-Molecule Imaging for Cell Biology and Super-Resolution Microscopy
细胞生物学和超分辨率显微镜的单分子成像
- 批准号:
10627987 - 财政年份:2016
- 资助金额:
$ 63.17万 - 项目类别:
Single-Molecule Imaging for Cell Biology and Super-Resolution Microscopy
细胞生物学和超分辨率显微镜的单分子成像
- 批准号:
10166075 - 财政年份:2016
- 资助金额:
$ 63.17万 - 项目类别:
Single-Molecule Imaging for Cell Biology and Super-Resolution Microscopy
细胞生物学和超分辨率显微镜的单分子成像
- 批准号:
10405123 - 财政年份:2016
- 资助金额:
$ 63.17万 - 项目类别:
2010 Single-Molecule Approaches to Biology Gordon Research Conference
2010 年单分子生物学方法戈登研究会议
- 批准号:
7904388 - 财政年份:2010
- 资助金额:
$ 63.17万 - 项目类别:
Three-Dimensional Superresolution Imaging in Living Cells Using Single-Molecule A
使用单分子 A 进行活细胞三维超分辨率成像
- 批准号:
7515437 - 财政年份:2008
- 资助金额:
$ 63.17万 - 项目类别:
Subcellular architecture of regulatory protein complexes at the bacterial pole
细菌极调节蛋白复合物的亚细胞结构
- 批准号:
8401468 - 财政年份:2008
- 资助金额:
$ 63.17万 - 项目类别:
Three-Dimensional Superresolution Imaging in Living Cells Using Single-Molecule A
使用单分子 A 进行活细胞三维超分辨率成像
- 批准号:
8119132 - 财政年份:2008
- 资助金额:
$ 63.17万 - 项目类别:
Actively Controlled and Targeted Single-Molecule Probes for Cellular Imaging
用于细胞成像的主动控制和靶向单分子探针
- 批准号:
7694995 - 财政年份:2008
- 资助金额:
$ 63.17万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 63.17万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 63.17万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 63.17万 - 项目类别:
Spatio-temporal mechanistic modeling of whole-cell tumor metabolism
全细胞肿瘤代谢的时空机制模型
- 批准号:
10645919 - 财政年份:2023
- 资助金额:
$ 63.17万 - 项目类别: