Three-Dimensional Superresolution Imaging in Living Cells Using Single-Molecule A
使用单分子 A 进行活细胞三维超分辨率成像
基本信息
- 批准号:7515437
- 负责人:
- 金额:$ 28.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-08-01 至 2012-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalBehaviorCellsCellular StructuresDepthDiagnosticDiseaseDrug Delivery SystemsFluorescence MicroscopyFutureGoalsImageImaging TechniquesIndividualInterventionLabelLifeLightLightingMedicalMethodsMicroscopeMicroscopicMicroscopyMorphologyOpticsOrganellesPhotobleachingPositioning AttributeResearchResolutionSamplingShapesSourceStandards of Weights and MeasuresThickThree-Dimensional ImageTimeUrsidae Familycell fixingdetectorfluorophoreimage processinginterestmutantnanoscaleoptical imagingprogramssingle moleculetrendtwo-dimensional
项目摘要
DESCRIPTION (provided by applicant): 3-D Superresolution Imaging in Living Cells with Single-Molecule Active Control Recent advances in microscopic imaging techniques with single molecules have led to superresolution information, that is, the ability to observe objects with resolution beyond the standard diffraction limit. These methods involve wide-field imaging, and require active control of the molecules in order to either turn emitters on or turn emitters off in order to maintain the concentration of emitters low enough to digitize the point-spread functions of individual molecules. By many imaging, photobleaching, and reactivation cycles, a superresolution image is obtained, but only for a two-dimensional projection of the actual three-dimensional sample. These methods may be collectively termed Single-Molecule Active Control Microscopy (SMACM), and have previously been applied primarily to fixed cells. However, many samples of biomedical interest, such as cells, are thick enough that two-dimensional imaging is a severe limitation. The primary goal of this research program is to achieve three-dimensional superresolution imaging in living cells using SMACM. This research will attack the problem of 3-D superresolution imaging with three thrusts. First, the optical illumination used to achieve active control will be tailored in its intensity as a function of time, in order to increase the efficiency of the reactivation and imaging process and eventually enable observation of time- dependent changes. Second, the microscope will be redesigned to utilize rotating point-spread functions. This relies on forcing the image of a single emitter to have a shape at the detector which rotates for different z- positions of the single molecule in the sample. The effect of this will be to enable much more precise determinations of the z positions of various single-molecule labels in the sample, which, when combined with precise localization in the x-y plane, will yield three-dimensional image information beyond the diffraction limit. Third, the research will implement multi-plane imaging in addition to rotating point-spread-functions, which will enable acquisition of 3D information over a greater depth into the sample. The results of this research will be to enable a new type of optical microscopy of cells, where three- dimensional superresolution information can be obtained in a noninvasive fashion about cellular substructures, including single molecules. The power of a single fluorophore as a nanoscale light source will then be used to its maximum benefit. By providing a new method for three-dimensional high resolution optical imaging in living cells, this research will bear directly upon biotechnological and biomedical applications as these fields currently utilize optical fluorescence microscopy of cells in many diagnostic situations. Current trends are pushing toward smaller and smaller spatial scales for analysis of the behavior and morphology of individual cellular structures. The ability to specifically and noninvasively analyze mutant or toxic behaviors of organelles and other tiny cellular structures will allow precise assessment of the utility of targeted drug treatments, which will help drive the future of medical interventions exactly at the point of disease.
描述(由申请人提供):具有单分子主动控制的活细胞中的3-D超分辨率成像,具有单分子的微观成像技术的最新进展已导致超分辨率信息,即能够观察具有超出标准衍射极限的分辨率的对象的能力。这些方法涉及宽场成像,并需要对分子进行积极控制,以便打开发射器或关闭发射器,以维持足够低的发射器浓度,以数字化单个分子的点伸出功能。通过许多成像,光漂白和重新激活周期,获得了超分辨率图像,但仅用于对实际三维样本的二维投影。这些方法可以集体称为单分子主动控制显微镜(SMACM),并以前主要应用于固定细胞。然而,许多生物医学兴趣的样本(例如细胞)足够厚,以至于二维成像是一个严重的限制。该研究计划的主要目的是使用SMACM在活细胞中实现三维的超级分辨率成像。这项研究将用三个推力攻击3-D超分辨率成像的问题。首先,用于实现主动控制的光照明将以其强度作为时间的函数量身定制,以提高重新激活和成像过程的效率,并最终能够观察到时间依赖的变化。其次,将重新设计显微镜以利用旋转点扩展功能。这依赖于迫使单个发射极的图像在检测器上具有形状,该探测器为样品中单分子的不同z-位置旋转。其效果将是更精确地确定样品中各种单分子标签的Z位置,当与X-Y平面中的精确定位结合使用时,它将产生超出衍射极限的三维图像信息。第三,除旋转点传播功能外,该研究还将实施多平面成像,这将使3D信息能够超过更深入的样本深度。这项研究的结果将是启用一种新型的细胞光学显微镜,其中可以以无创的方式获得有关细胞子结构(包括单分子)的三维超分辨率信息。然后将使用单个荧光团作为纳米级光源的功率,以最大程度的收益。通过为活细胞中的三维高分辨率光学成像提供新方法,该研究将直接依靠生物技术和生物医学应用,因为这些领域当前在许多诊断情况下都利用细胞的光学荧光显微镜。当前的趋势正在推向越来越小的空间尺度,以分析单个细胞结构的行为和形态。具体和非侵入性分析细胞器和其他微小细胞结构的突变体或有毒行为的能力将允许精确评估目标药物治疗的效用,这将有助于在疾病点准确地推动医疗干预的未来。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(6)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William E Moerner其他文献
William E Moerner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William E Moerner', 18)}}的其他基金
Single-Molecule Imaging for Cell Biology and Super-Resolution Microscopy
细胞生物学和超分辨率显微镜的单分子成像
- 批准号:
9920156 - 财政年份:2016
- 资助金额:
$ 28.47万 - 项目类别:
Single-Molecule Imaging for Cell Biology and Super-Resolution Microscopy
细胞生物学和超分辨率显微镜的单分子成像
- 批准号:
10627987 - 财政年份:2016
- 资助金额:
$ 28.47万 - 项目类别:
Single-Molecule Imaging for Cell Biology and Super-Resolution Microscopy
细胞生物学和超分辨率显微镜的单分子成像
- 批准号:
10166075 - 财政年份:2016
- 资助金额:
$ 28.47万 - 项目类别:
Single-Molecule Imaging for Cell Biology and Super-Resolution Microscopy
细胞生物学和超分辨率显微镜的单分子成像
- 批准号:
10405123 - 财政年份:2016
- 资助金额:
$ 28.47万 - 项目类别:
2010 Single-Molecule Approaches to Biology Gordon Research Conference
2010 年单分子生物学方法戈登研究会议
- 批准号:
7904388 - 财政年份:2010
- 资助金额:
$ 28.47万 - 项目类别:
Subcellular architecture of regulatory protein complexes at the bacterial pole
细菌极调节蛋白复合物的亚细胞结构
- 批准号:
8401468 - 财政年份:2008
- 资助金额:
$ 28.47万 - 项目类别:
Three-Dimensional Superresolution Imaging in Living Cells Using Single-Molecule A
使用单分子 A 进行活细胞三维超分辨率成像
- 批准号:
8119132 - 财政年份:2008
- 资助金额:
$ 28.47万 - 项目类别:
Actively Controlled and Targeted Single-Molecule Probes for Cellular Imaging
用于细胞成像的主动控制和靶向单分子探针
- 批准号:
7694995 - 财政年份:2008
- 资助金额:
$ 28.47万 - 项目类别:
相似国自然基金
片上力学微环境构建及其用于干细胞行为调控的研究
- 批准号:32371471
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
超拉伸、可重构微流道中细胞黏弹性-惯性迁移行为的调控机理研究
- 批准号:52305609
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
星形胶质细胞mGluR3增强GABA转运导致抑郁样行为
- 批准号:32300840
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
嵌合抗原受体巨噬细胞(CAR-M)微马达的制备及其血管蜂窝网络磁驱行为机理与控制方法研究
- 批准号:52375565
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于光学成像的大规模活体细胞跟踪及其对细胞行为的定量分析
- 批准号:82302255
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
相似海外基金
Oral pathogen - mediated pro-tumorigenic transformation through disruption of an Adherens Junction - associated RNAi machinery
通过破坏粘附连接相关的 RNAi 机制,口腔病原体介导促肿瘤转化
- 批准号:
10752248 - 财政年份:2024
- 资助金额:
$ 28.47万 - 项目类别:
Bioorthogonal probe development for highly parallel in vivo imaging
用于高度并行体内成像的生物正交探针开发
- 批准号:
10596786 - 财政年份:2023
- 资助金额:
$ 28.47万 - 项目类别:
Activity-dependent endocannabinoid control in epilepsy
癫痫的活动依赖性内源性大麻素控制
- 批准号:
10639147 - 财政年份:2023
- 资助金额:
$ 28.47万 - 项目类别: