Leveraing deep sequencing data to understand antibody maturation
利用深度测序数据了解抗体成熟度
基本信息
- 批准号:8825760
- 负责人:
- 金额:$ 37.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffinityAlgorithmsAntibodiesAntibody FormationAppointmentAreaAttentionB cell repertoireB-LymphocytesBayesian MethodBayesian ModelingBiological ProcessCell LineageCell MaturationCellsClinicCollaborationsCollectionCommunicable DiseasesComputer softwareComputing MethodologiesDNA Sequence RearrangementDataEpidemicEventEvolutionExposure toFloorGenesGoalsGrantHealthHigh-Throughput Nucleotide SequencingHumanHuman ResourcesImmuneImmune systemImmunityImmunoglobulin Somatic HypermutationImmunologyIndividualInfectionInfluenzaInterventionJointsLeadLearningLegal patentLightMalignant NeoplasmsMarkov ChainsMathematicsMediatingMetagenomicsMethodologyMethodsModelingMolecular EvolutionMutationNucleotidesOne-Step dentin bonding systemPathogenesisPhylogenetic AnalysisPhysicsPopulationPopulations at RiskPredispositionProcessQualifyingReceptor CellResearchResearch PersonnelRobin birdSamplingScientistSiteStatistical MethodsStatistical ModelsTechniquesTreesUncertaintyV(D)J RecombinationVaccine DesignVaccinesWorkadaptive immunityanalytical methodcancer cellclinical applicationcomputerized toolsdeep sequencingimprovedinnovationnovel strategiesopen sourcepathogenpublic health relevancereconstructionresponsetheoriestime usetool
项目摘要
DESCRIPTION (provided by applicant): Intellectual Merit: The health of each human being is critically dependent on its particular immune system. The adaptive component of the immune system is the means by which the body learns to recognize pathogens. Deficiencies in adaptive immunity place the individual as well as the population at risk for infectious diseases and cancers. The currently available mathematical and computational tools are not yet ready to characterize the full collection of changes in the antibody-mediated adaptive immune system occurring in response to exposure to new pathogenic entities. In particular, state-of-the-art methods are hindered by only focusing on a small subset of the immune cells at a time, using simple models of immune cell maturation that are not derived from data, and only giving point estimates for parameters of those models. The investigators propose to address these limitations by developing a novel approach to high throughput sequencing data from antibody genes by developing: 1) the first fully Bayesian inferential approach to immune cell maturation; 2) the first comprehensive statistical model of antibody cell maturation and evolution, including sequence models of antibody somatic hypermutation inferred directly from data; 3) innovative inferential tools to obtain posterior distributions on the joint assignment of collections of itemsto discrete parameters - scalable computational implementations of these models and inferential frameworks leading to their widespread application. In short, our work will both develop much needed analytical methods for a recently developed type of data and open a new area of statistical research. Broader Impacts: Comprehensive statistical modeling and inference of high throughput sequencing of immune cell receptors will provide information needed for rational vaccine design, prediction of susceptibility to infections, and understanding of the pathogenesis of immune cell cancers. B cell lineage reconstructions will allow scientists to track the changes that happen to an antibody in response to pathogen evolution, enabling vaccines to stay one step ahead of pathogens. An extension of this approach will be to use these tools to characterize not only the immunity of individuals, but also of populations, for example in their ability to resist epidemics. Our formalization will motivate research on a new type of inference problem with challenging statistical aspects. Our methods will be implemented in open-source software, so that any immunology lab or clinic can use these new approaches. Moreover, the proposed statistical methodology should find other applications beyond immunology, for example, in metagenomics.
描述(由申请人提供): 智力优点:每个人的健康很大程度上取决于其特定的免疫系统。免疫系统的适应性部分是身体学习识别病原体的手段。适应性免疫的缺陷使个体和人群面临感染性疾病和癌症的风险。目前可用的数学和计算工具尚未准备好描述抗体介导的适应性免疫系统因暴露于新的致病实体而发生的全部变化。特别是,最先进的方法受到阻碍,因为一次仅关注免疫细胞的一小部分,使用并非从数据导出的免疫细胞成熟的简单模型,并且仅给出参数的点估计。那些模型。研究人员建议通过开发一种新的方法来解决这些局限性,方法是通过开发一种新的方法来从抗体基因中获取高通量测序数据:1)第一个针对免疫细胞成熟的完全贝叶斯推理方法; 2)第一个抗体细胞成熟和进化的综合统计模型,包括直接从数据推断的抗体体细胞超突变的序列模型; 3)创新的推理工具,用于获得项目集合联合分配给离散参数的后验分布 - 这些模型和推理框架的可扩展计算实现导致其广泛应用。简而言之,我们的工作将为最近开发的数据类型开发急需的分析方法,并开辟统计研究的新领域。更广泛的影响:免疫细胞受体高通量测序的综合统计模型和推断将为合理的疫苗设计、预测感染易感性以及了解免疫细胞癌症的发病机制提供所需的信息。 B 细胞谱系重建将使科学家能够追踪抗体响应病原体进化而发生的变化,从而使疫苗能够领先病原体一步。这种方法的延伸将是使用这些工具不仅可以表征个人的免疫力,还可以表征群体的免疫力,例如抵抗流行病的能力。我们的形式化将激发对具有挑战性统计方面的新型推理问题的研究。我们的方法将在开源软件中实施,以便任何免疫学实验室或诊所都可以使用这些新方法。此外,所提出的统计方法应该能找到免疫学之外的其他应用,例如宏基因组学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Frederick Albert Matsen其他文献
Frederick Albert Matsen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Frederick Albert Matsen', 18)}}的其他基金
Fast and flexible Bayesian phylogenetics via modern machine learning
通过现代机器学习快速灵活的贝叶斯系统发育学
- 批准号:
10654594 - 财政年份:2021
- 资助金额:
$ 37.98万 - 项目类别:
Fast and flexible Bayesian phylogenetics via modern machine learning
通过现代机器学习快速灵活的贝叶斯系统发育学
- 批准号:
10434141 - 财政年份:2021
- 资助金额:
$ 37.98万 - 项目类别:
Fast and flexible Bayesian phylogenetics via modern machine learning
通过现代机器学习快速灵活的贝叶斯系统发育学
- 批准号:
10266670 - 财政年份:2021
- 资助金额:
$ 37.98万 - 项目类别:
Fast and flexible Bayesian phylogenetics via modern machine learning
通过现代机器学习快速灵活的贝叶斯系统发育学
- 批准号:
10593362 - 财政年份:2021
- 资助金额:
$ 37.98万 - 项目类别:
Blending deep learning with probabilistic mechanistic models to predict and understand the evolution and function of adaptive immune receptors
将深度学习与概率机制模型相结合,以预测和理解适应性免疫受体的进化和功能
- 批准号:
10593356 - 财政年份:2019
- 资助金额:
$ 37.98万 - 项目类别:
Blending deep learning with probabilistic mechanistic models to predict and understand the evolution and function of adaptive immune receptors
将深度学习与概率机制模型相结合,以预测和理解适应性免疫受体的进化和功能
- 批准号:
10159730 - 财政年份:2019
- 资助金额:
$ 37.98万 - 项目类别:
Blending deep learning with probabilistic mechanistic models to predict and understand the evolution and function of adaptive immune receptors
将深度学习与概率机制模型相结合,以预测和理解适应性免疫受体的进化和功能
- 批准号:
10415985 - 财政年份:2019
- 资助金额:
$ 37.98万 - 项目类别:
Leveraging deep sequencing data to understand antibody maturation
利用深度测序数据了解抗体成熟度
- 批准号:
9119033 - 财政年份:2014
- 资助金额:
$ 37.98万 - 项目类别:
Leveraging deep sequencing data to understand antibody maturation
利用深度测序数据了解抗体成熟度
- 批准号:
9318527 - 财政年份:2014
- 资助金额:
$ 37.98万 - 项目类别:
相似国自然基金
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向免疫疗法标志物识别的基于多特征融合的肽与MHC亲和力预测研究
- 批准号:62302277
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
DNA四面体限域辅助的高亲和力铅笔芯微电极用于早期癌症精准诊断研究
- 批准号:22304062
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Diagnostic aptamer reagents to develop multi-analyte blood test for pre-clinical, mild and moderate Alzheimer's disease
诊断适体试剂用于开发针对临床前、轻度和中度阿尔茨海默病的多分析物血液检测
- 批准号:
10597840 - 财政年份:2023
- 资助金额:
$ 37.98万 - 项目类别:
Small Molecule Therapeutics for Sickle Cell Anemia
镰状细胞性贫血的小分子疗法
- 批准号:
10601679 - 财政年份:2023
- 资助金额:
$ 37.98万 - 项目类别:
Predicting adverse drug reactions via networks of drug binding pocket similarity
通过药物结合袋相似性网络预测药物不良反应
- 批准号:
10750556 - 财政年份:2023
- 资助金额:
$ 37.98万 - 项目类别:
EnzyDock-based Multistate and Multiscale Tools for Covalent Drug Design
基于 EnzyDock 的多状态和多尺度共价药物设计工具
- 批准号:
10575904 - 财政年份:2023
- 资助金额:
$ 37.98万 - 项目类别:
De novo design of a generalizable protein biosensor platform for point-of-care testing
用于即时测试的通用蛋白质生物传感器平台的从头设计
- 批准号:
10836196 - 财政年份:2023
- 资助金额:
$ 37.98万 - 项目类别: