Release of Extracellular DNA during Biofilm Formation in Staphylococcus aureus
金黄色葡萄球菌生物膜形成过程中细胞外 DNA 的释放
基本信息
- 批准号:9905483
- 负责人:
- 金额:$ 63.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-11 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:AnabolismAntibiotic ResistanceAntibioticsBacteriaBiogenesisBiological AssayBiosensorCathetersCell WallCellsCellular StructuresCommunitiesCongo RedCytolysisCytoplasmic ProteinDNADevicesDropsDrug TargetingDyesElectrostaticsEnzymesExtracellular MatrixGenesGenetic TranscriptionGenus staphylococcusGlucoseGoalsGrowthImpairmentIndividualInfectionLabelMeasuresMediatingMicrobial BiofilmsModelingMolecular GeneticsMucous MembraneMutationNosocomial InfectionsNucleotidesPathway interactionsPeptidoglycanPeriodicityPharmaceutical PreparationsPolymersPolysaccharidesProteinsResistanceRoleSecond Messenger SystemsSkinSourceStaphylococcus aureusSurfaceTeichoic AcidsVancomycin-resistant S. aureusWorkadenine phosphoribosyltransferasebasecell envelopechronic woundcombatdrug developmentdrug discoveryexperimental studyextracellulargene functiongenetic approachgenome-wideimplantable deviceimplantationlipoteichoic acidmacromoleculemethicillin resistant Staphylococcus aureusmutantnew therapeutic targetpathogenic bacteriaphosphoric diester hydrolasesmall moleculetooltransposon sequencing
项目摘要
Staphylococcus aureus is often the cause of nosocomial infections, particularly when
these infections involve bacterial colonization of indwelling devices. The fact that these bacteria
are frequently carried asymptomatically on the skin and mucosal surfaces of many individuals
permits easy colonization of the pristine surfaces of such devices during implantation. Once
biofilms grow on these surfaces, they are difficult to eradicate because the constituent cells
become largely insensitive to the action of many commonly used antibiotics. These findings,
combined with the fact that a large percentage of S. aureus isolates identified in infections are
now resistant to numerous antibiotics makes it clear that new ways of combating staphylococcal
biofilm-associated infections need to be developed. The goal of this project is to understand
how methicillin-resistant S. aureus (MRSA) forms biofilms and thereby identify targets for the
discovery of drugs that block or reverse the formation of surface-associated communities.
To form a biofilm, S. aureus must produce an extracellular matrix. Major components of
the matrix are proteins and DNA. Many of the proteins are cytoplasmic in origin and are thus
moonlighting in their second role as components of the matrix. The extracellular DNA requires
the matrix proteins in order to adhere to the cells, serving as an electrostatic net that holds the
remaining cells together in the biofilm. Using a comprehensive molecular genetic approach, we
identified genes needed for the release of extracellular DNA during biofilm formation, including
the gene for a phosphodiesterase that controls the levels of a well-known second messenger,
cyclic-di-AMP. We have shown that cyclic-di-AMP levels drop when cells enter the biofilm state.
We propose to take advantage of a biosensor for measuring cyclic-di-AMP levels in cells
to identify genes that control its levels as cells enter the biofilm state. We will take advantage of
the discovery that mutants with altered levels of the second messenger are resistant to the dye
Congo red to discover additional genes involved in controlling cyclic-di-AMP levels.
We propose that the drop in cyclic-di-AMP levels weakens the cell envelope, causing
some cells to lyse and liberate protein and DNA for incorporation into the matrix. We will
investigate the hypothesis that low cyclic-di-AMP levels impair proper biosynthesis of teichoic
acid, the cell envelope polymers needed for cell wall integrity.
Finally, we exploit our fluorescent assay for c-di-AMP to carry out a cell-based screen for
small molecules that cause levels of the second messenger to rise. These hits will be a starting
point for the development of drugs that block biofilm formation.
金黄色葡萄球菌通常是医院感染的原因,特别是当
这些感染涉及留置装置的细菌定植。事实是这些细菌
经常在许多人的皮肤和粘膜表面无症状地携带
允许在植入过程中在此类装置的原始表面上轻松定殖。一次
生物膜生长在这些表面上,它们很难根除,因为组成细胞
对许多常用抗生素的作用基本上变得不敏感。这些发现,
再加上感染中发现的金黄色葡萄球菌分离株中很大一部分是
现在对多种抗生素具有抗药性,这清楚地表明对抗葡萄球菌的新方法
需要发展生物膜相关感染。该项目的目标是了解
耐甲氧西林金黄色葡萄球菌 (MRSA) 如何形成生物膜,从而确定目标
发现阻止或逆转表面相关群落形成的药物。
为了形成生物膜,金黄色葡萄球菌必须产生细胞外基质。主要组成部分
基质是蛋白质和DNA。许多蛋白质起源于细胞质,因此
兼职作为矩阵的组成部分的第二个角色。细胞外DNA需要
基质蛋白以粘附在细胞上,作为静电网来容纳
剩余的细胞聚集在生物膜中。使用综合分子遗传学方法,我们
确定了生物膜形成过程中释放细胞外 DNA 所需的基因,包括
控制众所周知的第二信使水平的磷酸二酯酶基因,
环-二-AMP。我们已经证明,当细胞进入生物膜状态时,环二磷酸腺苷水平会下降。
我们建议利用生物传感器来测量细胞中的环二AMP水平
识别当细胞进入生物膜状态时控制其水平的基因。我们将利用
发现第二信使水平发生改变的突变体对染料具有抗性
刚果红发现参与控制环二 AMP 水平的其他基因。
我们认为,环二磷酸腺苷水平的下降会削弱细胞膜,导致
一些细胞裂解并释放蛋白质和 DNA,以便掺入基质中。我们将
研究低环二磷酸腺苷水平损害磷壁酸正常生物合成的假设
酸,细胞壁完整性所需的细胞包膜聚合物。
最后,我们利用 c-di-AMP 的荧光测定来进行基于细胞的筛选
导致第二信使水平升高的小分子。这些热门歌曲将成为一个开始
开发阻止生物膜形成的药物的关键点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Kahne其他文献
Daniel Kahne的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Kahne', 18)}}的其他基金
Discovery and characterization of new bacterial cell wall targets and inhibitors to treat resistant infections
治疗耐药感染的新细菌细胞壁靶点和抑制剂的发现和表征
- 批准号:
10541882 - 财政年份:2020
- 资助金额:
$ 63.02万 - 项目类别:
Discovery and characterization of new bacterial cell wall targets and inhibitors to treat resistant infections
治疗耐药感染的新细菌细胞壁靶点和抑制剂的发现和表征
- 批准号:
10078251 - 财政年份:2020
- 资助金额:
$ 63.02万 - 项目类别:
Discovery and characterization of new bacterial cell wall targets and inhibitors to treat resistant infections
治疗耐药感染的新细菌细胞壁靶点和抑制剂的发现和表征
- 批准号:
10323034 - 财政年份:2020
- 资助金额:
$ 63.02万 - 项目类别:
Targeting Membrane Transport Steps in Cell Envelope Assembly
细胞包膜组装中的靶向膜运输步骤
- 批准号:
10027875 - 财政年份:2020
- 资助金额:
$ 63.02万 - 项目类别:
Targeting Membrane Transport Steps in Cell Envelope Assembly
细胞包膜组装中的靶向膜运输步骤
- 批准号:
10386887 - 财政年份:2020
- 资助金额:
$ 63.02万 - 项目类别:
Targeting Membrane Transport Steps in Cell Envelope Assembly
细胞包膜组装中的靶向膜运输步骤
- 批准号:
10610387 - 财政年份:2020
- 资助金额:
$ 63.02万 - 项目类别:
Release of Extracellular DNA during Biofilm Formation in Staphylococcus aureus
金黄色葡萄球菌生物膜形成过程中细胞外 DNA 的释放
- 批准号:
10392881 - 财政年份:2018
- 资助金额:
$ 63.02万 - 项目类别:
Discovery of Molecules to disrupt the outer membrane of Gram-negative pathogens
发现破坏革兰氏阴性病原体外膜的分子
- 批准号:
9017928 - 财政年份:2014
- 资助金额:
$ 63.02万 - 项目类别:
Outer Membrane Biogenesis: New Antibiotic Targets
外膜生物发生:新的抗生素靶点
- 批准号:
8793724 - 财政年份:2008
- 资助金额:
$ 63.02万 - 项目类别:
相似国自然基金
多环芳烃影响大肠杆菌抗生素耐药性进化的分子机制
- 批准号:32301424
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
靶向铜绿假单胞菌FpvA蛋白的铁载体偶联抗生素克服细菌耐药性及作用机制研究
- 批准号:82304313
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
乙醇脱氢酶AdhB介导肺炎链球菌抗生素耐药性的机制研究
- 批准号:32300154
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
鸭肠道菌群抗生素耐药性分布及替抗噬菌体内溶素鉴定研究
- 批准号:32360830
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
胞外DNA对厌氧颗粒污泥抗生素耐药性转移的影响及作用机制
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
Investigating metabolism and DNA damage repair in uropathogenic Escherichia coli fluoroquinolone persisters
研究泌尿道致病性大肠杆菌氟喹诺酮类持续存在的代谢和 DNA 损伤修复
- 批准号:
10747651 - 财政年份:2023
- 资助金额:
$ 63.02万 - 项目类别:
Structural and functional characterization of glycosyltransferases in the Campylobacter concisus N-linked glycoconjugate biosynthetic pathway
弯曲杆菌 N 连接糖复合物生物合成途径中糖基转移酶的结构和功能表征
- 批准号:
10607139 - 财政年份:2023
- 资助金额:
$ 63.02万 - 项目类别:
Live attenuated non-transmissible (LANT) Klebsiella pneumoniae vaccines
肺炎克雷伯氏菌减毒非传染性 (LANT) 活疫苗
- 批准号:
10742028 - 财政年份:2023
- 资助金额:
$ 63.02万 - 项目类别:
Structure and mechanism of membrane enzymes responsible for bacterial lipid modification and polymyxin resistance
负责细菌脂质修饰和多粘菌素抗性的膜酶的结构和机制
- 批准号:
10713771 - 财政年份:2023
- 资助金额:
$ 63.02万 - 项目类别: