Discovery of Molecules to disrupt the outer membrane of Gram-negative pathogens
发现破坏革兰氏阴性病原体外膜的分子
基本信息
- 批准号:9017928
- 负责人:
- 金额:$ 90.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-03-01 至 2019-02-28
- 项目状态:已结题
- 来源:
- 关键词:ATP phosphohydrolaseAcinetobacter baumanniiAffectAntibiotic ResistanceAntibioticsBiochemicalBiogenesisBiological AssayCarrier ProteinsCell Membrane PermeabilityCell surfaceCellsClinicalColistinCollaborationsComplexCytoplasmDefectEnzymesEscherichia coliFluorescenceGenesGeneticGenetic TranscriptionGram-Negative BacteriaGrantHealthHospitalsHumanIn VitroInfectionInstructionKnock-outLabelLaboratoriesLeadLipopolysaccharide Biosynthesis PathwayLipopolysaccharidesLuciferasesMembraneMethodsMulti-Drug ResistanceOrganismPathway interactionsPhospholipidsPolymyxinsPower SourcesProteinsPseudomonas aeruginosaReporterReporter GenesReportingResearch PersonnelServicesSpecificityStagingSurfaceTestingVancomycinantimicrobialbacterial resistancebasecell envelopedesigngenetic approachhigh throughput screeningin vivoinhibitor/antagonistinnovationkillingsmembrane biogenesismortalitymutantnovelpathogenperiplasmpreventpromoterproteoliposomesreconstitutionresearch studyscreeningsmall moleculesmall molecule inhibitortherapy developmentvaccine development
项目摘要
Antibiotic-resistant Gram-negative infections pose a major threat to human health. A defining feature of Gram-negative organisms is the presence of a second membrane, the outer membrane (OM), which regulates access of molecules to the periplasm. The OM is the reason that antibiotics that are effective against Gram-positive organisms, such as vancomycin, are not effective against Gram-negatives even though Gram-negatives contain the same targets. The OM is composed of an asymmetric bilayer containing phospholipids in the inner leaflet and lipopolysaccharide (LPS) in the outer leaflet. LPS on the cell surface creates a polyelectrolyte mesh that acts as a formidable barrier to passage of both hydrophilic and hydrophobic molecules. Preventing proper LPS biosynthesis and assembly is often lethal since LPS is essential in most Gram-negative organisms. Those organisms that are viable in the presence of LPS assembly inhibitors have OM defects that render them sensitive to antibiotics that cannot normally penetrate the OM barrier. In this grant, we propose to develop a comprehensive approach involving both target- and cell-based screens to identify small molecule inhibitors of OM biogenesis in Pseudomonas aeruginosa and Acinetobacter baumannii, two opportunistic pathogens for which multi-drug resistance is rampant. Aim 1 will use a target-based screen to identify inhibitors of LptB, the essential ATPase that powers the transfer of LPS from the inner membrane to proteins that translocate it to the OM. Aim 2 will use cell-based reporter assays to identify inhibitors of OM biogenesis in P. aeruginosa. Aim 3 will exploit the conditional essentiality of late stage enzymes involved in OM biogenesis in A. baumannii to develop a cell-based, pathway-speciflc screen to discover small-molecule inhibitors of LPS biogenesis. A novel fluorescence-based assay that reports on properly assembled LPS on the cell surface will be used to show that inhibitors found in the pathway-specific screen lead to defects in LPS assembly. We will validate that the hit compounds found in all aims are on target using novel biochemical and microbiological approaches developed in our labs. The most promising hit compounds will be subjected to optimization and in vivo efficacy studies in collaboration with the Discovery and Translational Services (DTS) Core. Using this combination of target- and cell-based screens we hope to identify new antibiotics to treat Gram-negative infections as well as compounds that potentiate clinically used antibiotics by rendering the OM leaky.
抗生素耐药性革兰氏阴性菌感染对人类健康构成重大威胁。革兰氏阴性生物体的一个决定性特征是存在第二层膜,即外膜(OM),它调节分子进入周质。 OM 是对革兰氏阳性菌有效的抗生素(如万古霉素)对革兰氏阴性菌无效的原因,即使革兰氏阴性菌含有相同的靶标。 OM 由不对称双层组成,内层含有磷脂,外层含有脂多糖 (LPS)。细胞表面的脂多糖形成聚电解质网,作为亲水性和疏水性分子通过的强大屏障。由于 LPS 在大多数革兰氏阴性生物体中至关重要,因此阻止适当的 LPS 生物合成和组装通常是致命的。那些在 LPS 组装抑制剂存在下仍能存活的生物体具有 OM 缺陷,这使得它们对通常无法穿透 OM 屏障的抗生素敏感。在这笔资助中,我们建议开发一种综合方法,涉及基于靶标和基于细胞的筛选,以识别铜绿假单胞菌和鲍曼不动杆菌(两种多药耐药性猖獗的机会性病原体)中 OM 生物发生的小分子抑制剂。目标 1 将使用基于靶标的筛选来识别 LptB 抑制剂,LptB 是一种必需的 ATP 酶,为 LPS 从内膜转移到蛋白质(将其易位到 OM)提供动力。目标 2 将使用基于细胞的报告基因检测来鉴定铜绿假单胞菌中 OM 生物发生的抑制剂。目标 3 将利用鲍曼不动杆菌中 OM 生物发生所涉及的后期酶的条件必要性来开发基于细胞的途径特异性筛选,以发现 LPS 生物发生的小分子抑制剂。一种新的基于荧光的检测方法报告了细胞表面上正确组装的 LPS,将用于表明在途径特异性筛选中发现的抑制剂会导致 LPS 组装缺陷。我们将使用我们实验室开发的新型生化和微生物方法来验证所有目标中发现的命中化合物是否达到目标。最有前途的热门化合物将与发现和转化服务 (DTS) 核心合作进行优化和体内功效研究。通过使用基于靶标和细胞的筛选的组合,我们希望找到治疗革兰氏阴性菌感染的新抗生素,以及通过使 OM 渗漏来增强临床使用抗生素的化合物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Kahne其他文献
Daniel Kahne的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Kahne', 18)}}的其他基金
Discovery and characterization of new bacterial cell wall targets and inhibitors to treat resistant infections
治疗耐药感染的新细菌细胞壁靶点和抑制剂的发现和表征
- 批准号:
10541882 - 财政年份:2020
- 资助金额:
$ 90.31万 - 项目类别:
Discovery and characterization of new bacterial cell wall targets and inhibitors to treat resistant infections
治疗耐药感染的新细菌细胞壁靶点和抑制剂的发现和表征
- 批准号:
10078251 - 财政年份:2020
- 资助金额:
$ 90.31万 - 项目类别:
Discovery and characterization of new bacterial cell wall targets and inhibitors to treat resistant infections
治疗耐药感染的新细菌细胞壁靶点和抑制剂的发现和表征
- 批准号:
10323034 - 财政年份:2020
- 资助金额:
$ 90.31万 - 项目类别:
Targeting Membrane Transport Steps in Cell Envelope Assembly
细胞包膜组装中的靶向膜运输步骤
- 批准号:
10027875 - 财政年份:2020
- 资助金额:
$ 90.31万 - 项目类别:
Targeting Membrane Transport Steps in Cell Envelope Assembly
细胞包膜组装中的靶向膜运输步骤
- 批准号:
10386887 - 财政年份:2020
- 资助金额:
$ 90.31万 - 项目类别:
Targeting Membrane Transport Steps in Cell Envelope Assembly
细胞包膜组装中的靶向膜运输步骤
- 批准号:
10610387 - 财政年份:2020
- 资助金额:
$ 90.31万 - 项目类别:
Release of Extracellular DNA during Biofilm Formation in Staphylococcus aureus
金黄色葡萄球菌生物膜形成过程中细胞外 DNA 的释放
- 批准号:
9905483 - 财政年份:2018
- 资助金额:
$ 90.31万 - 项目类别:
Release of Extracellular DNA during Biofilm Formation in Staphylococcus aureus
金黄色葡萄球菌生物膜形成过程中细胞外 DNA 的释放
- 批准号:
10392881 - 财政年份:2018
- 资助金额:
$ 90.31万 - 项目类别:
Outer Membrane Biogenesis: New Antibiotic Targets
外膜生物发生:新的抗生素靶点
- 批准号:
8793724 - 财政年份:2008
- 资助金额:
$ 90.31万 - 项目类别:
相似国自然基金
鲍曼不动杆菌抵御黄色黏球菌捕食行为的分子机制与生物学意义
- 批准号:32370114
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基因ytnP克隆表达及其对鲍曼不动杆菌的群体淬灭作用及机制研究
- 批准号:82360003
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
邻氨基苯甲酸群体感应系统调控鲍曼不动杆菌耐药和毒力的分子机制
- 批准号:32300033
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抗碳青霉烯耐药鲍曼不动杆菌新型BfmR抑制剂的发现与活性研究
- 批准号:82304377
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抗CRISPR蛋白抑制CRISPR-Cas系统介导鲍曼不动杆菌耐药和毒力演化机制研究
- 批准号:82373637
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Dual-Wavelength Blue Light Irradiation for Improved Treatment of Staphylococcus aureus Infections
双波长蓝光照射改善金黄色葡萄球菌感染的治疗
- 批准号:
10724476 - 财政年份:2023
- 资助金额:
$ 90.31万 - 项目类别:
Bladders and biomes: Environmental compounds as modifiers of microbiomes, metabolomes, and urothelium
膀胱和生物群落:环境化合物作为微生物群、代谢组和尿路上皮的调节剂
- 批准号:
10740296 - 财政年份:2023
- 资助金额:
$ 90.31万 - 项目类别:
Using strain history to improve prediction of the evolution of antimicrobial resistance in Acinetobacter baumannii
利用菌株历史改进对鲍曼不动杆菌抗菌药物耐药性演变的预测
- 批准号:
10677362 - 财政年份:2023
- 资助金额:
$ 90.31万 - 项目类别:
Advancing ribosome-targeting antibacterial peptides with a unique mechanism of action
以独特的作用机制推进核糖体靶向抗菌肽
- 批准号:
10443921 - 财政年份:2022
- 资助金额:
$ 90.31万 - 项目类别:
Project 3: Defining and defeating the mechanisms of outer membrane biogenesis in Gram-negative bacteria
项目 3:定义并破解革兰氏阴性菌外膜生物发生机制
- 批准号:
10699956 - 财政年份:2022
- 资助金额:
$ 90.31万 - 项目类别: